

1

Howes Atkinson Crowder LLP

http://www.hacengineers.co.uk

EC2 DESIGN TOOL

HAC-PRO

- 1 - 5 - 2

Excel Program

By

Robin Atkinson BSc, CEng, FICE, FIStructE

16th September 2012

Link to Download Updates and Licence Information

http://www.hac.idc5.co.uk/hacrc/Info.htm

CONTENTS AND PAGE NUMBERS

Front	1		Slender	49	-	50
Introduction	2		STAAD	51	-	53
Key Features	3		Tables	54	-	57
FAQ	4		Service Equation	58	-	63
References	5		Ultimate Equation	64	-	65
Main	6 -	11	Coefficients	66	-	68
Info	12 -	27	Example	69	-	81
Basics	28 -	29	Restraints	82	-	98
Crack Control	30 -	34	Detailing	99	-	102
Shear	35 -	40	Moment Capacities	103	-	104
Punching Shear	41 -	43	Fatigue	105	-	108
Flexure	44 -	48				

	EC2 DESIGN TOOL	
	INTRODUCTION	Howes Atkinson Crowder LLP
	HAC-PRO 1 - 5 - 2 INTRO 1	Copyright © 2009 HAC
IMPORTANT NOTES	SAVE THIS FILE AS A MASTER. ONLY WORK DO NOT SAVE DIRECTLY TO A SERVER. SAV	

INTRODUCTION

Background

The author has over 30 years experience in the design of concrete structures and this program has evolved over a period of 10 years by constant use. It was initially designed to introduce a repeatable procedure into the design of concrete tanks. It then developed into a universal design method suitable for slabs beams and columns as well. More recently it has been updated to incorporate design to EC2 and CIRIA C660. A particular feature is the ability to display the ultimate capacity unity ratio for combined axial and bending therefore removing the need for a plotted chart each time.

Aim

The primary aim of this program is to provide a powerful design tool that enables engineers to process and display a number of reinforced concrete designs to the British and Euro codes in a concise and orderly manner. It also aims to offer a useful training tool via the use of interactive charts and diagrams.

Method and Layout

The data is entered within the sheet called MAIN. It is divided into Global Data which controls all of the designs and Local Data which is adjustable for each individual design case. The user enters the Global Data first and then the Local section properties, reinforcement and loadings and the program displays the ultimate capacity ratios and service crack widths and other compliant related output including thermal and shrinkage. It does not provide the code clause by clause input style that is offered by other spreadsheets because its primary aim is to process multiple calculations in a tabular layout.

The detailed output demonstrates the compliance with the codes and is suitable for submission for checking by others. There are numerous interactive charts and diagrams which relate to a chosen design case and are displayed on the 2nd MAIN sheet and assist in the input and understanding of the process.

Guidance on input method and design matters is provided via comment boxes. This information is also reproduced within the Info sheet, thus providing an in depth guide which can be printed. Where data such as shear legs or additional bars or compression bars is not required, a zero should be entered. Defaults are suggested for thermal which can be used when a design is not thermal critical.

There are three styles for the design sheet. Normal is for every day use and only shows the notation for normal shear. Punch only shows the notation required for punching shear. All shows the notation required for all shear types on the same sheet. Adjustable data is displayed in bold green or violet.

Design Pages

The program offers 24 designs over 2 pages. Detailed charts are reproduced to a large scale on a separate page and can be printed out.

National Annex Values

The UK National Annex values have been used in all cases and key values are displayed. An α c value of 0.85 has been used for concrete in flexure and axial loading and a value of 1.0 has been used for shear and tension. This spreadsheet can easily be modified to incorporate other National Annexes.

Frequently Asked Questions

A selection of likely questions and some further elaboration is provided in the FAQ sheet.

	EC	2 DESIGN TOOL		
	l k	EY FEATURES		Howes Atkinson Crowder LLP
		HAC-PRO 1 - 5 - 2	KEY 1	Copyright © 2009 HAC
• C • C • S • A • C • II • II • F • C • C • S	Concise layout allows r Designs to BS8110 & E Column layout style allo Simultaneous thermal, Automatic crack width of Jser definable service Interactive stress and la FAQ and numerous info Detailed BS and EC2 p Automatic Punching Sh Step by step design ou	apid input, review and a S8007 or EC2 can be s ows multiple designs pe service and ultimate des calculation & bi-axial or or ultimate Axial & Mom ayout diagrams displaye ormative comment boxe unching shear procedur ear β Value calculation tput sheets and Staad b enced engineer and test	side by side r page signs r slender colur ent capacity d ed on adjacent s with input gu re guidance sh and implemen ased Wood an	iagram sheet uidance notes neet ntation nd Armer method
MEMBER &	DESIGN TYPES			
Memb	er Types:- D	esign Types:-		
• S • C • V	Beams Blabs Columns Valls Ties	Ultimate and Service Shear or Punching S Bi-Axial Bending or Thermal & Shrinkag Fatigue Stress Redu	Shear or Torsi Slender or le to Ciria C91	on Redistribution
LAYOUT FE	ATURES			
	ocal input and output of Global data with full des nteractive diagrams ca Diagrams are displayed 3S or EC2 code design	n boxes at head of page data displayed on one s scriptions on a separate n be set to match any d d on a separate printable applicable per design o lata - values and diagra	heet sheet esign case e sheet case	tomatically

- Three sheet layout styles for shear input:-
 - Normal Normal shear or torsion
 - Punch Punching shear
 - All types of shear or torsion All

INPUT SEQUENCE

- Global data •
- Design case description boxes •
- Local design type and load factor, thermal, section and reinforcement data •
- Local applied shear and moment (M) & axial force (N) data •

OUTPUT FEATURES

- Global output includes cement type and nominal cover requirement •
- Ultimate capacity is displayed as a unity factor •
- Ultimate N & M capacity is based on the applied N / M ratio Service crack widths for Face 1 and Face 2 (if applicable) •
- •
- Reinforcement stresses for Face 1 and Face 2 •
- Compliance & other data including Span / Depth ratio •
- Thermal and shrinkage data and crack widths •

	EC2 DESIGN TOOL		HAC
	FREQUENTLY ASKED QUESTIO	NS	Howes Atkinson Crowder L
	HAC-PRO 1 - 5 - 2	FAQ 1	Copyright © 2009 HAC
FREQUENTLY ASKED G	UESTIONS		
	nst the Concrete Centre spreadsheets and the pa uctural Engineer 17 Sept 2002 and 17 May 20		
Is it Updated and How D			
-	is used constantly by HAC. Contact is:	<u>suppor</u>	t@hacengineers.co.uk
shear design require reinf What Do The Charts Sho They show how the servi behaviour and can assist	r, this method includes every type of design that yo orcement information, it is convenient to have all o bw ce and ultimate stress & strain diagrams differ. in the use of the program. They show how X r pped as the Strain x Es (equiv to reinf stress) value	f this on one sh They can be us elates to the N	neet. sed to check on the section I - M curve and how the ult
	atios Mean unity checks. The combined N & M ratio is th y value for the same Axial and Moment ratio. See	••	
How Do I Print Results The Excel sheets have be	en designed to print to an A4 size Adobe PDFat 9	0%.	
What Does F1 & F2 & Ex F1 = Face 1 & F2 = Face	t ra Mean 2 which are the flexural only tension and compre	ssion faces. E	xtra specifies extra bars and

What Is The C660 Method

CIRIA C660 introduces a more rigorous shrinkage End or Edge or Internal restraint approach than BS8007 & C91. Enter C91 to allow the traditional BS8007 and C91 design to be followed.

How Do I Design A Normal Beam or Slab With No Axial Load And Why Is X Limited.

For column side bars (one each side), enter S1. For torsion longitudinal bars enter 4 or more.

Set axial load to 0. Set δ value; max (no red) to 0.85 for EC2 or 0.9 for BS and min (redistribution) for Reinf Class B & C or 0.7 and for Class A to 0.8. For pure bending, X must be <= Xu i.e. (δ - 0.4)D/(0.6 + 0.0014/ɛcu₂) equals (δ - 0.4)D for fck <= 50 N/mm² (where D is Eff Depth) so that the reinf yields first and sufficient rotations can occur. If the N - M value of X, (Xo) > Xu, the section is not in ultimate equilibrium about the centre unless the tens reinf is reduced or comp reinf is added. The Ult Mcap equals Mr, the minimum of the concrete stress block and comp reinf acting about the centroid of the tens reinf (Mc) or vice versa (Mt). The output displays if:- Z>0.95D or Mt equals Mc (where Xo ≤ Xu) or Mt > Mc (where Xo > Xu). Ensure also that M / Mcap ratio is < 1.

How Do I Design To EC2

Enter EC2 at the head of the output. The shear strut angle and leg angle can be adjusted. The shear shift value "a1" is displayed. Bi-axial bending requires a design for each axis and the combined ratios must be \leq 1.0. Enter applied N and enter and adjust Mx until the capacity equals 1.00 to give Mr and then enter the applied moment in the Bi-axial cell. The program calculates (Mb/Mr)^a value for each axis.

What Is The S / (D x 20 x Str Sys) Ratio

EC2 & BS8110 give a simply supported span /depth ratio of 20 for 0.5% As1, C30 and a service reinf stress of 310 N/mm² If this is multiplied by 20 and the structural system (for other span types) it gives the span / depth ratio.

How Do I Design For Punching Shear

Enter Pi or Pc or Pe or Pr and Px & Py dims and MED. Enter Shear VED & UDL w if applicable. For BS, initially, set leg dia to 0 and xD to 1.5, if cap ratio < 1.0, it is OK. If not, enter leg dia, out and transv spacing for all xDs within Dout (1.5D, 2.25D, 3D etc). Note: reinf is uneconomic if v > 1.6vc.

Display

The sheet has been designed to suit 1024 x 760 resolution. Zoom by 125% to view on a 1280 x 1024 screen.

		EC2 DESIGN TOOL	
		REFERENCES	Howes Atkinson Crowder LLP
		HAC-PRO 1 - 5 - 2 REFS 1/1	Copyright © 2009 HAC
1	BS 8110	Structural Use of Concrete Part 1 For Design and cons Part 2 For special circums	
2	BS 8007	Design of concrete structures for retaining aqueous liquids	
3	BS EN 206 -1	Concrete - Part 1: specification, performance, production and	conformity
4	BS8500 - 1	Concrete - Complimentary British Standard to BSEN 206 - 1 Part 1 : 2006 Method of specifying and guidance for the specif	ïer
5	BS8500 - 2	Concrete - Complimentary British Standard to BSEN 206 - 1 Part 2 : 2006 Specification for constituent materials and concre	ete
6	CIRIA Report 91	Early-age thermal crack control in concrete - revised edition pe	ublished 1991
7	CIRIA Report C660	Early-age thermal crack control in concrete - replaces Report	91 - published 2007
8	BS EN 1990:2002 + A1:200	Eurocode 0. Basis of structural design UK National Annex to BS EN 1990:2002 + A1:2005	
9	BS EN 1991-1-1:2002	Eurocode 1. Actions on Structures - Part 1-1: General Actions Densities, self-weight, imposed loads for buildings UK National Annex to BS EN 1991-1-1-2002	3 -
10	BS EN 1991-4:2006	Eurocode 1. Actions on structures. Part 4: Silos and tanks UK National Annex to BS EN 1991-4-2006	
11	BS EN 1991-5:2006	Eurocode 1. Actions on structures. Part 5: Thermal Actions UK National Annex to BS EN 1991-5-2006	
12	BS EN 1992-1-1:2004	Eurocode 2. Design of concrete structures. Part 1 - 1: Genera UK National Annex to BS EN 1992-1-1-2004 - Incorporating	
13	BS EN 1992-3-2006	Eurocode 2. Design of concrete structures. Part 3: Liquid retai UK National Annex to BS EN 1992-3-2006	ning and containing structures
14	The Concrete Centre	RC Spreadsheets V3 by Charles Goodchild and Rod Webster	
15	W. Mosley & J. Bungey	Reinforced Concrete Design	
16	Dr A.W. Beeby	The Prediction of Crack Widths in Hardened Concrete 1979 Cracking and Corrosion, Concrete in the Oceans Report 1978	
17	H.G. Kruger	Crack Width Calculation to BS8007 for Combined Flexure and Structural Engineer September 2002	Tension
18	CARES	The CARES Guide to Reinforcing Steels	
19	R.S. Narayanan & A. Beeby	Designer's Guide to EN1992-1-1 and EN1992-1-2 Eurocode 2 Design of concrete structures. General rules and rules for built	
20	C.R. Hendy & D.A. Smith	Designer's Guide to EN1992-2 Eurocode 2: Design of concrete structures. Part 2: Concrete bridges	
21	Moody	Moments and Reactions For Rectangular Plates	
22	Portland Cement Association	on Circular Tanks Without Prestressing	
23	Hordijl, Wolsink, de Vries TNO Building & Research	Fracture and fatigue behaviour of high strength limestone con- gravel concrete	crete as compared to
24	EuroLightCon	Fatigue of Normal Weight Concrete and Lightweight Concrete	
25	C Edvardsen	Water Permeability and Autogenous Healing of Cracks in Con ACI Materials Journal July / August 1999	crete

Copyright © 2009 HAC

6

1

HOW TO USE THE MAIN SPREADSHEET

AIMS

To be able to check a proposed cross section and reinforcement subjected to various direct or indirect actions and display compliance or otherwise.

To allow multiple designs on the same page

To have one sheet which can be adapted as required

To allow designs in one pass which do not require any goal seek or visual basic routines

To be able to switch simply from an EC2 check to a BS check.

To provide live graphics to assist the designer

METHOD

- A Go to the Global Data Sheet and examine the Input Data. The program opens with a realistic set of values. The data changed most frequently is called Key Global Data and is reproduced at the head of each Design Sheet. Edit the Global Input Data as required. These values apply to every design in the spreadsheet. This sheet also displays the global ouput values used.
- **B** Go to the first Design Sheet and select the Style of the sheet in respect of shear. This will adjust the shear related headings to give a simpler look if only normal shear or if only punching shear designs are used. The program opens with the All Style which shows both.
- **C** The program opens with lots of design examples. Save, print or create a pdf of these pages for reference.
- **D** Keep the first design case on the Design sheets and delete the rest. You will see that the output results clear.
- E The charts will be initially set to apply to Design Case 1. Edit the 4 lines of description at the top and the bold green input data. Set the Code to EC2 or BS.
- **F** Review the output results. The Shear and combined Axial and Moment values show a capacity factor like the unity check used in steelwork. The value must be less than 1.0 to comply.
- **G** Note that non compliance is shown in Red.
- **H** Copy Design 1 over to next column and set Charts to 2. Edit Design 2 as required. Never cut and paste.
- I Repeat for further designs.
- J The off sheet diagrams are reproduced after the Designs. You can print one design case diagrams at a time to pdf or a printer.
- **K** The background and formulae used in the program are displayed in detail in subsequent sheets in the FULL and PRO versions of the program.

COMMENTS

Some Actions such as Axial and Moment and Shear are interdependant

2 pages with 12 designs per page

Provides a "One Stop Shop" program

Allows Instantaneous Update

Some data such as for shrinkage and shear will be different for each code

The off sheet diagrams are interactive

NOTES

Many values will not require editing

The output data on the right shows useful information and defaults for shrinkage

Minimum cover and binder description do not affect the designs

Punching Shear designs and Normal Shear designs will usually be kept separate. The layout will be clearer.

This demonstrates the input options

To allow copying and pasting. Output clears if Load Factor is deleted.

Follow the instructions within the comment boxes and Info tab

The output results show most of the information traditionally required.

Can be adjusted within the Global Input

Specify the Shear Design. S = NormalPi or Pr or Pe or Pc = Punch, T = Torsion.

Enter 0 in cells where there is no input

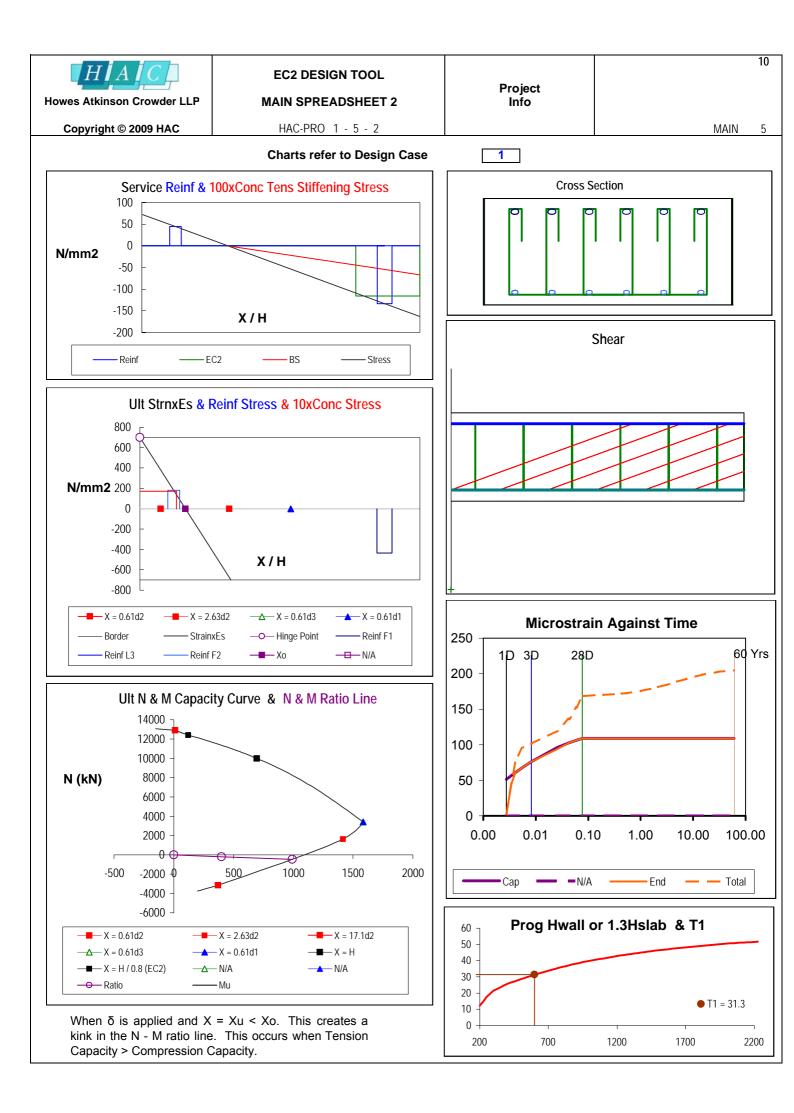
Diagrams are bigger and have more information.

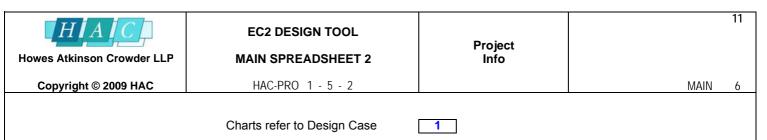
These include additional graphics and completely interactive teaching aids and examples

			1		
	EC2 DESIG	N TOOL	Project		1
Howes Atkinson Crowder LLP	MAIN SPREA	DSHEET 1	Info		
Copyright © 2009 HAC	HAC-PRO 1	- 5 - 2			MAIN 2
GLOBAL DATA		II Design Cases	Key = Data	a which is commonly	
INPUT DATA			OUTPUT VALUES	Refs relate to EC2 cl	lauses
Reinforcement					
Young's Modulus - Fixed	Value kN/mm ²	200	Reinforcement		
Grade N/mm ²		500	Fyk - Yield Stress - N/mm ²		500
Class - A, B or C		В	Fyd - Maximum Stress - N/mm ²	N1/2	435
Rib Profile - D2 or PR Material Partial Safety Fa	etor - ve	D2 1.15	Δσsk - Fatigue Reduced Stress - Fs1 & Fs2 Output - nr of decima		N/A 0
Service Stress Max Desig		.70	k3 Fyk - Max Service Design Stre		350
Concrete			Concrete		
28 Day Cube Strength - f	ck.cube N/mm² or Mpa	37 Key	Cement / Combination Type		IIIA
Load Duration Long (L) o		L	Nominal Cover (Min + Perm Dev)	mm	35
Liquid Tightness Class	ΔWK1 % Active	1 30	C fck / fck cube - at 28 Days - I		/ 37
BS8007 Stiffening N/mm ²	² 0.667 or 1.0 or Auto	0.667	EC2 & BS Modulus Ec - at 28 Da		27.4
Crack Width (W) Alert Va Material Partial Safety Fa		0.20 1.50	EC2 & BS Modular Ratio (MR) - a EC2 & BS Min %As1 / BH	at 28 Days 15.2 0.15	18.2 0.13
Ignore Fs2 in Tension in I		Y	EC2 & BS Min shear Legs %AsL		
Adjust Axial & Flexure W		Ý	EC2 & BS Basic Anchorage / dia		35.7
Adjust C660 End Restr W		N	EC2 & BS Ult shear at support far		4.9
Slenderness Method - Cu		NC	3 & 28 & LT Ult Tensile Strength		2.90
Minimum Lap Length / dia Lap Length / dia Alert Val		20 50	3 & 28 & LT Ult Tensile µStrain 3 & 28 & LT Autogenous µStrain	76 109 15 33	109 50
Exposure Class - XC, XD		XC2 Key	Min or Design or Max Service σ L		
Design Life (DL) in Years	for Cover Calculation	60			
Cover Permitted Deviatio		10	Shrinkage & Crack Control		0.05
Service Stress / fck Limit		0.45 1.50 Key	C660 Creep Coefficient K1	1/2	0.65
Creep Coefficient (CC) us Age at Loading in D or Y		28D	C660 Sustained Load Coefficient C91 Blended GGBS Mix T1 Factor		0.80 0.76
Final Age For Auto CC in		60Y	Aggregate Expansion α x 10E-6		12.0
Design & Crack Check A		28D	High Bond Bars, Bond Fact = fct		1.14
			3 Day, 28 Day, LT pcrit %As1 / B		0.58
Binder Strength Gain Class - R c	nrNorS Ref 3 1 2 (6)	N Key	Design Check Age (t) pcrit %As	I / BZ	0.58
Total Binder Content Kg/r		350 Key	Useful UK National Annex (NA)	and EC2 Values	
W / C Ratio		0.50 Key	acc = LT effects coeff - Flexure &	Axial - UK NA	0.85
PC or SRPC		PC Key	act = LT effects coeff - Tension -		1.00
GGBS % - Max = 80		50 Key	acc = LT effects coeff - Shear - U		1.00
or PFA % - Max = 55	L	0 Key	CRd,c = Shear factor - UK NA = I k1 = k3 - Redistribution - UK NA		0.12 0.40
Aggregate	Ec28 με28 μα	%	$k^2 = k^4 - \text{Redistribution} - \text{UK NA}$		1.00
Basalt	39.4 90 10.0	0	εcu2 = Ultimate Concrete Compre		0.0035
Chert, Flint	38.5 93 12.0	0	fcd = Design Compressive Stren		17.0
Quartzite Granite, Gabbro	32.8 109 14.0 33.1 108 10.0	0 0	λ = Rectangular Compression Blo η = Effective Strength Factor	ock Height / X	0.80 1.00
Limestone	29.6 122 9.0	0	η λ = Effective Rectangular Comp	oression Block Height / X	0.80
Sandstone	23.0 155 12.5	0	fcd = Design Shear Strength - at		20.0
Default (C660)	32.8 109 12.0	100 Key	v1 = Vert Leg Cracked Shear Fac		0.53
Aggregate Size mm	Maximum	20 Key	EC2 only Lap (Dia ϕ >32) = Basic	value x 100 /	132-φ
Thermal & Shrinkage &	Creep		Provisional Design Data - if unl	nown or not relevant	
Mean Daily Temperature		15	Head of Liquid		N/A
Concrete Placing Temper Min T1 values apply to E		20 No 0.80	Restraint Method BS		C91 Edge
Auto C660 T1 Value - Us		Prog	Restraint Method EC2 /C660 Restraints R1, R2 & R3		Edge 0.50
Drying Period in (DP) Yea		60Y	Formwork		Ply
LT fctm & ɛcap based on	28D or Later i.e. 60Y	28D	Drying Faces & Relative Humidi	ty %	1 & 85
Edge Restr Age for Min ۶ End Restr Age for Min %		3D 28D	Temperature Drop T2		20
Linu Nesu Aye IOI WIII /0/		200	Fatigue Factors Used by Progra	am	
Fatigue			Concrete in Compression (includ		1.000
Millions of Cycles 1 > N		N/A	Concrete in Shear	4 000 4 000	1.000
Cyclicle oMin / oMax or Verify Compression via 6		N/A 1.00 6.72 0.45	Reinf - Straight, Bent m=7φ, Ben	t m=4φ 1.000 1.000	1.000
veniy compression via C	οι οι τεγο ς	0.12 U.HJ		-	

Verify Compression via 6.72 or 6.77	Legs ζ	6.72	0.45	l
EC2 Lap Length a6 Factor	ρ1	α6	αd	
Based on % of lapped bars relative to	<25%	1.00	Default	
the total cross section. See Figs 8.7 &	33%	1.15	Output	
8.8, Cl 8.7.3 & Table 8.3.	50%	1.40	Value	
For anchorage lengths use a6 = 1.0.	>50%	1.50	1.50	Key
Ult Lap or Adjust Lap Lengths by Servic	e Stress (N/m	m²) /	Ult	Key

<u>β</u> 1.15 Veff/V Default β Values for Near Equal Spans Pi = Internal 1.15 Pe = Edge Pc = Corner 1.40 1.50 Pr = Re-entrant 1.30 2.0D

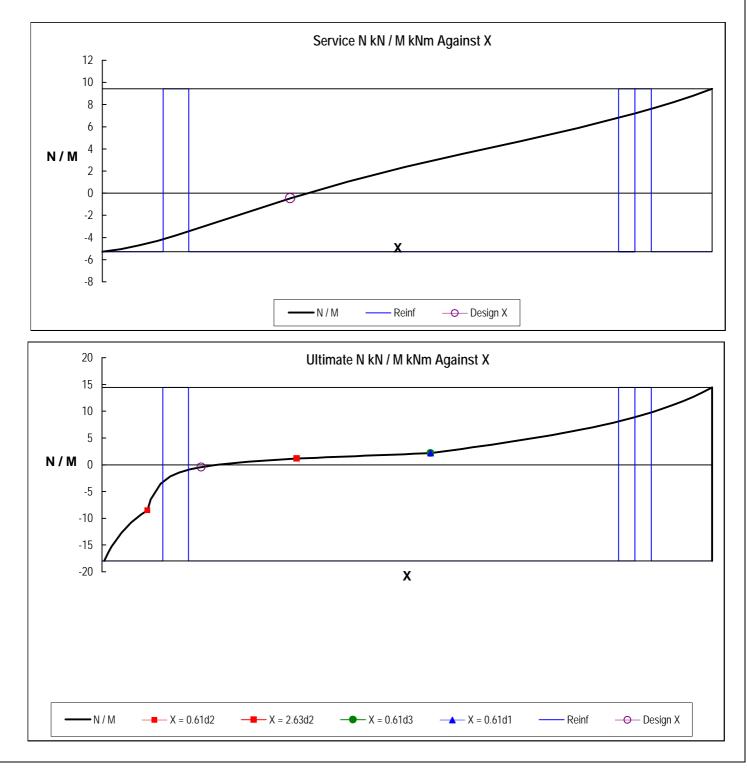

EC2 & BS Basic Control Perimeters U1 distance BS Circular Col Perimeter as a Square or Circle


1.40 1.25 1.30 1.5D

Circle

				I	EC2 DESI	GN TO	OL										8
Howes Atkinso	Howes Atkinson Crowder LLP			MA	AIN SPRE	ADSHE	ET 1			Project Info							
Copyright © 2009 HAC					HAC-PRO	1 - 5 -	2									MAIN	3
DESIGN 1	Charts	1	Key		oal Data	1	2	3	4	5	6	7	8	9	10	11	12
INPUT	Style	All	Binder Grade	350 N	50 GGBS C 30 / 37	Wall Moment	Punch Design	Punch Design	Circ Tank	Circ Tank	Panel 2 Mv at	Slab V Dir at	Slab X Dir at	Wall H Edge	Wall V Edge	Beam Design	Col Slender
	Dimo	in mm	Agg	20	Default	&	with	with	Hor	Vert	Base	Pile	Span	Restr	Restr	30%	EC2
Desta	_		Laps	1.5	Ult	Tension	ŭ	Legs	Design	Design	S2	S2	S2	Base	Base	Red	Red
Design		=Service l ctor = Ult /		е	S or U LF	S 1.35	U 1.35	U 1.40	S 1.35	S 1.35	U 1.40	U 1.40	S 1.35	S 1.20	S 1.35	U 1.40	U 1.40
	Head of L	Liquid in m	m or N/		ho	7000	7000	N/A	4000	4000	7000	7000	7000	7000	7000	N/A	N/A
Restraint		f or Bi-A Edge, End,			Leff, Bi-Ax Restr	N/A End	N/A End	N/A C91	N/A Edge	N/A Edge	N/A Edge	N/A Edge	N/A End	N/A Edge	N/A Edge	N/A Edge	9000 Edge
Restraint		trained Ler			Lr	16000	16000	N/A	N/A	N/A	N/A	16000	12000	N/A	N/A	N/A	N/A
		estraint - I			R1	0.40	0.20	0.50	0.77	0.77	0.35	0.60	0.60	0.60	0.35	0.60	0.60
		T2 Seasor m Restrair		lint	R2 R3	0.40 0.40	0.20 0.20	0.50 0.00	0.50 0.50	0.50 0.50	0.35 0.00	0.00 0.00	0.60 0.60	0.60 0.30	0.35 0.00	0.60 0.60	0.60 0.60
Shrinkage		k - Grnd, F			Fmwk	Ply	Grnd	Grnd	Ply	Ply	Ply	Grnd	Grnd	Ply	Ply	Ply	Ply
		Faces & - or Auto f			EF & Rh	1 & 85		1 & 85	1 & 85		1 & 85	1 & 85		1 & 85	1 & 85	1 & 85	1 & 85
		- or Auto f I Temperat		-	T1, ΔT T2	Auto 20	Auto 15	Auto 15	Auto 20	Auto 20	Auto 20	Auto 15	Auto 15	Auto 20	Auto 20	Auto 20	Auto 20
Section	Type - Sl	ab, Beam,	Wall, Co		Туре	Wall	Slab	Slab	Wall	Wall	Wall	Slab	Slab	Wall	Wall	Beam	Col
	Face 1 - 1 Depth H	top, bot, in	it, ext, ang	/	Face 1 H	int 600	top 600	top 600	any 300	int 300	int 600	top 600	bot 600	int 600	int 600	bot 450	any 300
	Width B				В	1000	1000	1000	1000	1000	1000	1000	1000	1000	1000	450 600	600
Main Reinf		φ1&φ21		S	F1φ	32	20	20	12 & 16	20	25	20	32	20	16	32	25
		ing >49 or F1 main b			@ or nr Cov	150 60	150 50	150 50	150 40	150 56	150 50	150 50	150 60	150 40	150 40	4 52	4 52
		φ1 & φ2 f		S	F2 φ	25	20	20	12 & 16		20	20	20	20	16	20	25
		ing >49 or F2 main b			@ or nr	150	150	150	150	150	150	150	150	150	150	4	4
		or $\phi1\&\phi$		oars	Cov Extra φ	60 0	50 0	50 0	40 16	56 0	50 0	50 0	60 0	40 0	40 0	52 0	52 25
	Bnr, BÉr	nr, Lgap,	S1, >3 T		Fact	0	0	0	BE1	0	0	0	0	0	0	0	S1
Shear or		T or Pi,F or nxφ o		2	Type Leg φ	S 16	Pi 20	Pi 20	S 0	S O	S 16	Pi 0	S 0	S 0	S 0	S 12	S 10
Torsion		ng or rad c			Sr	300	405	405	0	Ő	300	0	0	0	0	300	300
or	Legs - lor	ng or rad s	tart <=0.8	5D	Sr1	150	270	270	0	0	150	0	0	0	0	150	150
Punching		ransv ctrs ransv ctrs			St , nr nra	150 0	12 12	405 405	0 0	0	150 N/A	0	0	0	0	4	4 0
	Strut Ang	gle or P	unch X di	m	θ°, Ρx	21.8	600	600	Ő	Ő	21.8	600	Ő	Ŏ	Ŏ	21.8	21.8
		e or Pur			α°, Py Vratio	90 0	600 0	600 0	0 0	0 0	90 0	Dia 0	0	0	0	90 0	90 0
		en xD & 2l ective Dept		Supp	Vratio xD	2.00	2.00	1.50	2.00	2.00	2.00	1.00	2.00	2.00	2.00	2.00	2.00
	Punch w	(kN/m²), 1	Teff or Au	uto	w, Teff	0	0	0	0	0	0	0	0	0	0	0	0
		kNm) or De kNm) or N/		N/A	β MEDxx β MEDyy	N/A N/A	Def N/A	Def N/A	N/A N/A	N/A N/A	N/A N/A	Def N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Forces		un VED(kN		NM)	V or T	220	3750	3750	10	94	1382	2100	45	100	1	387	50
		ce (kN) Te		J.	N	-137	0	0	-535	10	1	1	-200	-100	1	0	965
Bi-Ax, Slen, δ		Moment (k c1, 0.7 <=		blank	Μ Β, Μ, δ	296	140	140	0	-72	100	180	-120	100	1	436 0.70	50 30
OUTPUT		DE OF PF			BS, EC2	EC2	EC2	BS	EC2	EC2	BS	BS	EC2	EC2	EC2	EC2	EC2
Results		P or T) / C			S, P, T	0.17	0.99	0.91	0.16	0.78	1.01	1.16	0.21	0.54	0.01	0.69	0.24
	Ult (Axial	& Momen	t) / Cap		N & M	0.40	0.30	0.30	0.35	0.51	0.14	0.39	0.20	0.32	0.00	1.00	1.00
		Crack Widt Crack Widt		nfo nfo	W1	0.147	0.157	0.034	0.132	0.170	0.004	0.070	0.072	0.120	0.001	0.354	0.280
		or ult - refe			W2 X	0.000 185	0.000 63	0.000 61	0.132 <-9999	0.000 93	0.000 77	0.000 61	0.000 150	0.000 113	0.000 152	Mt>Mc 115	SLEN 141
Values	Fs1 N/mr	m²	β Value		Fs1 , β	-133	1.15	1.15	-112	-168	-435	1.15	-67	-118	-1	-435	-435
Dark	Fs2 N/mr S transv /		St / D at St / D at		Fs2,St/D St / D	44 0.29	1.3229 1.06	0.75 0.75	-112 0.00	37 0.00	137 0.28	N/A N/A	14 0.00	17 0.00	0 0.00	304 0.39	362 0.72
	Sp/(Dx20		AsL% at		Sp/D,%L	1.821	0.109	0.192	2.000	1.601	>2	N/A	1.466	2.000	2.000	0.876	1.392
Denotes	%AsLegs	s/BSr	AsL% at		%AsL	0.447	0.136	0.192	0.000	0.000	0.447	N/A	0.000	0.000	0.000	0.251	0.175
Punching Shear	9, (MD/M % As1 / E	r)≃, w⊫a BH	xD at Dr xD at Dr		θ,Bi,M,Dri %As1,Dro	21.8 0.893	2.000 3.500	0.500 1.250	N/A 0.795	N/A 0.698	21.8 0.545	N/A N/A	N/A 0.893	N/A 0.349	N/A 0.223	21.8 1.191	242.06 1.363
	lap / (φx(a6/ad))	xD at Uc	ut	Lp,DUout	47	4.669	3.237	39	39	20	2.145	47	46	42	49	45
Data	EC2 Shr	Shift a of F1 &	Perim at		a1, Ux As1	590 5362	9185 2094	8880 2094	252 2388	234 2094	N/A 3272	5277 2094	524 5362	550 2094	552 1340	430 3217	233 2454
		ctive Depth		<i>)</i>	D	5362	2094 540	2094 540	2388	2094	538	2094 540	5362	2094 550	552	3217	2454 207
	Max Full	Thickness	Crack or	Teff	Wk1	0.166	0.166	N/A	0.158	0.158	0.166	0.166	0.166	0.166	0.166	N/A	N/A
		es % As1 / e 1 Bond (nk₀ pCrit Bond	0.259 Good	0.232 Poor	N/A N/A	0.446 Good	0.230 Good	N/A N/A	N/A N/A	0.272 Good	0.252 Good	0.232 Good	0.232 Good	0.027 Good
Shrinkage		pth (BS) o		EC2)	Z	255	255	250	150	150	255	255	255	255	255	208	150
	T1 or ΔT	. ,		,	T1, ΔT	31.3	29.7	24.4	21.5	21.5	31.3	29.7	29.7	31.3	31.3	24.0	21.5
		hrinkage µ Width or l		a us	μεcd W , με	138 0.168	138 92	138 0.188	145 0.108	145 0.191	138 0.070	138 0.092	138 0.154	138 0.161	138 0.077	142 0.147	145 0.130
		nkage % A		ωμc	kcρCrit	0.100	92 0.58	0.188	0.35	0.35	0.070	0.092	0.154	0.101	0.35	0.147	0.130
	% As1 / E	ΒΖ			%As1	2.10	0.82	0.84	1.59	1.40	1.28	0.82	2.10	0.82	0.53	2.58	2.18
	Creep Co	pefficient (UU)		φ(∞,to)	1.52	1.52	1.52	1.57	1.57	1.52	1.52	1.52	1.52	1.52	1.54	1.57

					EC2 DESI	GN TO	OL										9
Howes Atkins	on Crowd	er LLP		MA	AIN SPRE	ADSHE	ET 1				ject fo						
Copyright	© 2009 H	AC			HAC-PRO	1 - 5 -	2									MAIN	4
DESIGN 2	Charts				oal Data	13	14	15	16	17	18	19	20	21	22	23	24
INPUT	Style	Normal	Binder Grade	350	50 GGBS	Beam	Beam	Beam	Col Short	Col Short	Col	Col	Col	Col	Torsion	Torsion	_ 0
			Agg	N 20	C 30 / 37 Default	Design 10%	Design 10%	Design 30%	Short	Bi-Ax	Short Bi-Ax	Short Bi-Ax	EC2	Slender BS	Only EC2	Only BS	Tens With
	Dims	in mm	Laps	1.5	Ult	Red	Red	Red		Mx	My	BS	202		202	50	Legs
Design		Service l		е	S or U	U	U	U	U	U	U	U	U	U	U	U	U
		ctor = Ult / Liquid or N			LF ho	1.40 N/A	1.40 N/A	1.40 N/A	1.40 N/A	1.40 N/A	1.40 N/A	1.40 N/A	1.40 N/A	1.40 N/A	1.40 N/A	1.40 N/A	1.40 N/A
		, Bi-Ax or		N/A	Leff, Bi, Lr	N/A	N/A	N/A	N/A	Bi-Ax	Bi-Ax	Bi-Ax	5670	6050	N/A	N/A	N/A
Restraint		Edge, End,			Restr	Edge	Edge	Edge	Edge	Edge	Edge	C91	Edge	C91	Edge	C91	Edge
		trained Ler	ngth Lr or	N/A	Lr	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Curing R	estraint T2 Restrai	int		R1 R2	0.60 0.60	0.60 0.60	0.60 0.60	0.60 0.60	0.60 0.60	0.60 0.60	0.60 0.60	0.60 0.60	0.60 0.60	0.60 0.60	0.60 0.60	0.60 0.60
		m Restrair			R3	0.60	0.60	0.60	0.60	0.60	0.60	0.00	0.00	0.00	0.60	0.00	0.60
Shrinkage		k - Grnd, F			Fmwk	Ply	Ply	Ply	Ply	Ply	Ply	Ply	Ply	Ply	Ply	Ply	Ply
		Faces &			EF & Rh	1 & 85			1 & 85			1 & 85		1 & 85	1 & 85	1 & 85	
		- or Auto f I Temperat			T1, ΔT T2	Auto 20	Auto 20	Auto 20	Auto 20	Auto 20	Auto 20	Auto 20	Auto 20	Auto 20	Auto 20	Auto 20	Auto 20
Section		ab, Beam,			Туре	Beam	Beam	Beam	Col	Col	Col	Col	Col	Col	Beam	Beam	Wall
	Face 1 -	top, bot, in			Face 1	top	bot	bot	any	any	any	any	any	any	top	top	any
	Depth H		·		Н	600	450	450	450	500	600	600	300	300	600	600	300
Main Reinf	Width B	φ1 & φ2 f	for alt har	c .	Β F1 φ	1000 25	600 20	600 40	350 16	600 32	500 32	500 32	300 32	300 32	600 25	600 25	1000 25
		ing >49 οι		5	@, nr	8	4	40	2	3	3	3	2	2	23	23	150
	Cover to	F1 main b	ars		Cov	52	52	52	52	52	52	52	40	40	60	60	40
		φ1&φ2 f		5	F2 φ	20	16	20	16	32	32	32	32	32	25	25	25
		ing >49 or F2 main b			@ , nr Cov	8 52	4 52	4 52	2 52	3 52	3 52	3 52	2 40	2 40	2 60	2 60	150 40
		or $\phi1\&\phi$		oars	Extra o	52 0	52 0	52 0	52 0	32	32	32	40	40	25	25	40
		nr, Lgap,			Fact	Ő	Ő	Ő	Ő	S1	S1	S1	Ő	Ő	4	4	Ő
Shear		ar or T = 1			Туре	S	S	S	S	S	S	S	S	S	T	T	S
or		or nxφ (i.		750	Leg φ	10	10	10	10	10	10	10	10	10	20	20	10
Torsion		ongitudinal ongitudinal			Sr Sr1	300 150	300 150	300 150	300 150	300 150	300 150	300 150	300 150	300 150	300 150	300 150	150 150
		ansv ctrs >			St, nr	4	4	4	3	3	3	3	3	3	2	2	150
		l in Norma			N/A	0	0	0	0	0	0	0	0	0	0	0	0
	Shear St	rut Angle (norm = 2	1.8°)	θ°	21.8	21.8	21.8	21.8	21.8	21.8	45	21.8	45	45	45	29.8
	(V betwe	eg Angle (n en xD & 2l	0111 – 90 D) / VED	,	αº Vratio	90 0	90 0.6	90 0	90 0	90 0	90 0	90 0	90 0	90 0	90 0	90 0	90 0
		ective Dept		Supp		2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00
	EC2 Tors	sion Teff o			Teff	0	0	0	0	0	0	0	0	0	Auto	0	0
	Not Used				N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Forces	Not Used	1 N) or Torsi	on (kNm)		N/A V or T	N/A 393	N/A 397	N/A 387	N/A 50	N/A 275	N/A 337	N/A 275	N/A 50	N/A 50	N/A 150	N/A 150	N/A 400
101003		ce (kN) Te			N	0	0	0	1600	2500	2500	2500	1500	1500	1	1	-400
	Primary N	Moment (k	Nm)		М	285	186	425	5	665	830	410	80	80	1	1	5
Bi-Ax, Slen, δ	Bi-Ax, Mo	c1, 0.7 <=	δ <= 0.9,	blank	Β, Μ, δ	0.90	0.90	0.70		410	410	410	-50	-50			
OUTPUT	CO	DE OF PF	RACTICE		BS, EC2	EC2	EC2	EC2	EC2	EC2	EC2	BS	EC2	EC2	EC2	BS	EC2
Results		r Tor / Cap			Shr,Tor	0.72	1.00	1.00	0.17	1.00	1.00	0.50	0.50	0.67	1.08	0.97	0.68
	Ult (Axial	& Momen	t) / Cap	,	N & M	0.34	0.94	1.00	0.54	1.00	1.00	0.94	0.95	0.99	0.00	0.00	0.15
		Crack Widt Crack Widt		nfo nfo	W1 W2	0.128	0.405	0.201	0.000	0.231	0.241 21.6	0.270	0.001	0.006 SLEN	0.003	0.000	0.062
		or ult - refe			X	Mt=Mc 89	Mt=Mc 63	Mt>Mc 113	0.000 1058	21.8 280	21.0 341	18.9 338	SLEN 233	227	0.000 80	0.000 77	0.048 17
Values	Fs1 N/mr	11²			Fs1	-435	-435	-435	264	-379	-393	-403	-33	-52	-435	-435	-435
	Fs2 N/mr				Fs2	197	37	300	402	418	418	418	418	418	<mark>62</mark>	30	-435
	S transv				St / D	0.47	0.39	0.40	0.30	0.56	0.38	0.38	0.41	0.41	0.57	0.57	0.61
	Sp/(Dx20 %AsLegs				Span / D %AsL	2.000 0.105	1.164 0.175	0.726 0.175	2.000 0.224	1.410 0.131	1.415 0.157	1.019 0.157	2.000 0.262	2.000 0.262	2.000 0.349	>2 0.349	2.000 0.349
	θ, (Mb/M				θ, Bi, MEd	21.8	21.8	21.8	21.8	0.564	0.434	45	116.55	124.43	45	45	29.8
	% Ås1 / E	ЗH			%As1	0.654	0.465	1.861	0.255	1.072	1.072	1.072	1.787	1.787	0.272	0.272	1.090
	lap / (φx(EC2 Shr	ab/ad))			Lap	64 602	41	56	54 420	49	49	44	52 275	52	61	20	49
Data		ea of F1 &	F1+ (mr	n²)	a1 As1	602 3927	437 1257	425 5027	439 402	404 3217	494 3217	N/A 3217	275 1608	110 1608	487 982	N/A 982	194 3272
		nt Effective		.,	D	536	388	378	390	359	439	439	244	244	528	528	248
	Max Full	Thickness	Crack or	Teff	Wk1	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
		es % As1 /			nk₀ pCrit	0.232	0.232	0.232	0.000	0.000	0.000	N/A	0.000	0.000	0.232	N/A	0.346
Shrinkage		e 1 Bond (pth (BS) o		- 	Bond Z	Poor 255	Good 208	Good 208	Good 208	Good 225	Good 255	N/A 250	Good 150	Good 150	Poor 255	N/A 250	Good 150
- minura Ae	T1 or ∆T	,			T1, ΔT	29.7	24.0	24.0	27.1	28.6	31.3	29.1	21.5	18.9	29.7	24.4	21.5
		hrinkage µ			μεcd	138	142	142	142	141	138	138	145	145	138	138	145
		Width or l		d με	W,με	0.165	0.196	0.130	0.278	0.161	0.148	0.195	0.082	0.084	0.378	0.407	0.130
		nkage % A	51/DZ		k₀ pCrit %As1	0.35 1.54	0.35 1.01	0.35 4.03	0.35 0.55	0.35 1.79	0.35 1.89	0.35 1.93	0.35 3.57	0.35 3.57	0.35 0.64	0.35 0.65	0.35 2.18
	% As1 / E	37			% <u>A</u> e1	1 3/1										11 11 11	



The following two charts show the cubic equation curves of N/M plotted against X between X = 0 & X = H for service and ultimate methods for the same design.

The normally used M/N = Ecc term has been inverted. As M reduces to zero, N/M approaches infinity beyond X = H when N is positive or at X = 0 or less when N is negative. Both curves intersect the axis between X = 0 & X = H when N = 0 i.e. pure flexure.

	EC2 DESIGN	I TOOL	
	INFORMA	TION	Howes Atkinson Crowder LLP
	HAC-PRO 1	- 5 - 2 INFO	1 / 16 Copyright © 2009 HAC
INFORMATION FRO	OM COMMENT BOXES		
GLOBAL INPUT			
Reinforcement			
Grade N/mm ²			
Yield Strength. Common	ly 500 for HY and 250 for MS. Note	e:- Young's Modulus is fixed	at 200 kN / mm²
Class - A, B or C			
	other properties. See CARES literature.		
	Self Temper (QST) or Cold Stretched. G	arade C can be Micro-Alloy c	or QST. Grades B or C should be
chosen if any redistributio Class / Grade	n is likely. The key properties are:- Yield Stress N/mm ²	Tensile / Yield ratio	Elongation Act(E)
500 A	500		Elongation Agt(5)

Class / Grade	Yield Stress N/mm ²	Tensile / Yield ratio	Elongation Agt(5)
500 A	500	1.05	2.5
500 B	500	1.08	5.0
500 C	500	1.15	7.5

Rib Profile - D2 or PR

D2 = Deformed Type 2 or PR = Plain Round

Material Partial Safety Factor - ys

Factor of Safety For material. Typically 1.15 for Grade 500 and 1.05 for Grade 460 (Gives approx same result)

Service Stress Max Value Factor - k3

Sets a factor for an alert value on the maximum service stress as a K3 factor x Fyk. Max Value equals 0.8. See CI 7.2

Concrete

28 Day Cube - Fck, cube N/mm²

Enter Required 28 Day Cube Strength. Program will calculate the Cylinder Strength. NOTE The cube value is always greater than the cylinder value. Specification is Cylinder / Cube. See Output. Be vigilant. Serious errors can be made.

Material Partial Safety Factor - yc

Factor of Safety for material, Typically 1.5

Exposure Class - XC, XD, XS

XC = CarbonationXIXC1 Dry or permanently wetXIXC2 Wet, rarely dryXIXC3&4 Moderate humidityXIor cyclic wet and drySee BS EN 206-1:2000 for more details.

XD = ChloridesXD1 Moderate humidityXD2 Wet, rarely dryXD3 Cyclic wet and dry

XS = Sea Salts XS1 To airborne salt but not in direct contact with sea water

XS2 Permanently submerged XS3 Tidal, splash and spray zones

EC2 Pt3 Liquid Tightness Class

0 For no control

1 For standard compliance.

2 For very high control (max<=0.05mm) 3 For ultimate control (generally only achievable with Post/ Pre Tensioning). NOTE:- EC2 Pt 3 suggests zero full depth crack width to satisfy Class 2. Note the term full depth. EC2 specifies that unless at least 20% of the section is in compression (i.e. X serv equals 0.2H or 50mm), it is considered to be full depth. This will seriously affect high tension elements such as circular walls. It will also apply to any full depth thermal cracks. CIRIA C660 CI 2.6 suggests that a 0.05mm crack or less will self seal even with a pressure head of 35 or more. It therefore seems reasonable to set a max of 0.05 reducing to 0.025m at a head of 35 for class 2 rather than 0. If in doubt use Class 3. However, if the value of X is greater than 0.2H or 50mm it may be acceptable to use a 0.3mm crack width.

Additional Wk1 % Active

EC3 and C660 defaults at WK1 actively increasing by 30% and back once a day. Enter 30 or 20 or 10. Agree with Client.

Crack Width Alert Value

Service crack width which triggers a red alert in the output

Cont.

HAC-PRO 1 - 5 - 2

INFO 2/16

Copyright © 2009 HAC

INFORMATION FROM COMMENT BOXES

Concrete Cont.

Slender Method - NC or NS

Sets the EC2 method of slender column or strut design. Enter NC for Nominal Curvature or NS for Nominal Stiffness. The nominal curvature method is similar to the BS8110 method and is recommended.

Minimum Lap Length x dia

Minimum lap used in detailing. Greater values are shown in the output when requited.

Load Duration - Long (L) or Short (S)

L equals Long, S equals Short. This will affect crack widths as short term loading allows 50% more tension stiffening than long term. Normally L is specified. This could possibly be used at testing.

Design Life (DL) in yrs

Specifications often call for 60 years even though the code only gives values for 50 yrs or 100 yrs. The program interpolates between the two values. Enter value followed by Y i.e. 60Y

Cover Permitted Deviation

This is the tolerance allowed to the contractor when checking compliance against the specified cover on site. Other minimum specifications should be consulted and questions should be asked about site checking before accepting use of full tolerance.

Design Service Stress / fck Limit Factor - k

This is the value used in the service design to limit compressive stress. The stress will display in the W2 ouput if this value is exceeded. It does not take account of the Non Linear Creep Coefficient as the non linearity will only occur beyond 0.45fck. See CI 3.1.4. The increase in CC for K1 up to 0.6 is not significant but results in an increased Modular Ratio and slightly smaller crack widths. This program uses an upper limit of 0.6 but defaults to 0.45.

Creep Coefficient (CC) used in MR or Auto

This allows the user to over-ride the Local Auto calculation so that the values can be checked against traditional / previous methods. CC is used in calculating Modular Ratio (MR), where MR equals Es / (Ec/(1+CC)). Enter a value as described below OR enter Auto. It has been common practice to use CC equals 1 for flexure and tension crack width design. This will therefore half the value of Ec. So a typical MR would be 210 / (28 / 2) i.e. 15 but note EC2 Ec is higher than BS value.

However, a higher value may be appropriate for structures designed to ultimate criteria in order to check deflection serviceability. The EC2 Creep Coefficient (CC) values are displayed below and these values should be used. Typically a CC of 1.5 is more appropriate than 1.0. This results in adjusting the EC by dividing by 2.5. i.e. Eceff in analysis equals 0.4EC.

The effect on the crack widths between using CC of 1 or 1.5 is negligible on EC2 designs but can increase crack widths by approx 3% to BS designs. In water retaining structures the high relative humidity and lower average ambient (15 deg rather than 20 deg) will reduce the CC to below 1.5 in many cases. A factor of 1.5 rather than 1 may be more appropriate.

Age At Loading - days (to) for Auto CC or N/A

Age at first loading for the purposes of calculating the Creep Coefficient automatically. Often the first loading is not as much as the full loading and will only support Self Weight. CC is used for deflection even if it is fixed for MR. i.e. ValueD or ValueY.

Creep Coefficient (CC) Final Age For Auto CC or Max or N/A

Typically taken as Infinity or 1 Million for φ (∞ , t0) if Max is entered but a lower value i.e. the design life may be entered. Note:-Table 3.1 does not match the Annex B values where fcm<35 (fcu<33) N/mm2. CC is used for deflection. ValueD or ValueY

Design Check Age - Days (t) or Years

Age at which the design is checked. The usual default is 28D but the user can check earlier or later (crack widths only). This alters the strength of the concrete in tension and hence the stiffening effect. A value more than 28 days will increase the stiffening by about 17%. A value of 3 days will reduce it by 40%. EC2 does not allow the use of an increase in compressive strength beyond 28 days to avoid retrospective validation of designs using higher strengths. Enter ValueD or ValueY

Early loading may occur in high rise construction. Once a crack occurs it will remain there. This is very useful for testing the strength before removing props or for supporting construction loads such as props and floors above.

Certain global values such as %As1 and AsL values are not altered. Thermal values are not altered because they are checked at 3 days and 28 days anyway and appropriate fctm and E values are used (the latter with no creep ratio factor). Tension strength for service moment and axial design is adjusted accordingly which means the tension stiffening will be less.

HAC-PRO 1 - 5 - 2

INFO 3/16

Copyright © 2009 HAC

INFORMATION FROM COMMENT BOXES

Design Check Age - Days (t) or Years Cont.

EC2 & BS

The values of fck are fcm(t) -8 between 3 and 28 days and fck thereafter. This will reduce the value of fcd accordingly. For normal strength gain cements:- fcm (t) equals β cc(t) fcm where Ecm(t) equals ((fcm(t) / fcm)^0.3)^0.3 Ecm

βcc(t) equals exp ((0.25 (1 - ((28 / t)^0.25))) fctm (t) equals ((βcc (t))^(1 if t < 28 or 2/3 if T > 28)) fctm

Therefore the variation in Ecm is much less than fctm with the concrete reaching 86% of Ec28 but only 60% of fcm at 3 days. The reduction in Ecm will affect the Young's modulus used in the service design.

Formwork Striking

Section 6.2.6.3.2 of BS8110 advises that the concrete strength should be 10 N/mm2 or twice the stress it will be subjected i.e. if the material FOS is 1.5 and the load FOS is 1.4, 1.5 x 1.4 = 2.1 so a 5% temp reduction is adopted. This program can be used if Load Factor is set to 1.33 and the ultimate forces are entered. However, note that the 3 day value is 60% of the 28 day value which will exceed 10 N/mm2. Therefore, in order to check the design, the basic Fcu value should be reduced accordingly. i.e. use 20 N/mm2 and t=2 to reproduce 10 N/mm2 etc. The strength should always be verified by cube testing. Also ensure that any deflections and cracks are not excessive as these will be locked into the element for ever. The deflections would be based on the early age Young's Modulus. This is 86% of the 28 day value at 3 days and 81% at 2 days (note how fast the E value rises) so will be less inhibiting than the cracking. The crack prediction formulae will be based on a lower tensile strength of concrete which will reduce the tension stiffening and will therefore create proportionally greater cracking so beware if this is critical such as in the soffi

Binder

Strength Gain Class - R or N or S

Can be considered as R = Rapid or N = Normal or S = Slow Ref Cl 3.1.2 (6). Usual value is N

Also refer to Table A.1 of BS8500 - 2:2006 which is the Complimentary Standard to BSEN 206 - 1 Part 2 - 2006 - see Refs.

CEM 42.5R, CEM52.5N & CEM52.5R should achieve a cube strength >= 20 N/mm² at 3 days and are Class R

CEM 32.5R, CEM 42.5N should achieve a cube strength >= 10 N/mm² at 3 days and are Class N

CEM 32.5N should achieve a cube strength >= 16 N/mm² at 7 days and is Class S

The BCA document "Modern Cements and How to Specify Them" uses the following definitions for the suffixes used above:-

R = High early strength N = Normal strength development L = Low early strength

EC2 re-groups these according to the actual strengths achieved and does not define what R, N and S stand for. One would normally use Class N for water retaining structures as this gives the best compromise. Use of R may give a better 3 day strength and hence strain resistance but at the expense of a higher heat of hydration.

Total Content Kg/m³

This is the TOTAL amount i.e. (PC or SRPC) + (GGBS or PFA).

W / C Ratio

This will affect strength and durability and cover. Low values may affect workability.

PC or SRPC

PC = Portland Cement, SRPC = Sulfate Resisting Portland Cement

GGBS %

Ground Granulated Blastfurnace Slag - Often 50% but can be more in some circumstances. Will help reduce heat of hydration.

Or PFA %

Pulverised Fly Ash. This will help reduce the heat of hydration but is not as effective as GGBS. CIRIA C660 values are taken from the charts within the document. CIRIA 91 Method is as follows

For a 360kg/m3 OPC mix, it will be nec to use a higher total blended amount say 390kg/m3. BS8007 places a max of 35% PFA. If the mix has 275 Kg/m3 of OPC and 115 Kg/m3 of PFA, the program calculates T1 based on 275 kg/m3 OPC and then adds the specified concrete placing temp which is taken as the curing temp (usually 5 deg above the ambient). This combined temperature is then used to calculate the extra temp rise due to PFA as follows

Peak Combined Temperature	Add Temperature Due To PFA	
<= 20	0	
30	1.0	
40	2.5	
50	4.0	
60	5.5	
70	7.0	
80	8.5	
		C

	E	C2 INTERACTIVE DESIGN T	OOL	HAC
		INFORMATION		Howes Atkinson Crowde
		HAC-PRO 1 - 5 - 2	INFO 4/16	Copyright © 2009 HA
	FROM COMMEN	T BOXES		
Concrete Cont.				
Aggregate				
	s. The modulus, strair	n capacity and coefficient of expansion r	relate to the type of Ag	gregate.
Ec28		με 28	α x 10E-	6
EC2 28 Day Modulus	s in kN/mm²	Ult Tensile Microstrain Capacity at 28	days Coefficie	nt of Expansion Ref CIRIA 660
%				
Adjust % to suit the a	aggregate used. It is o	often a mix. Total must = 100%		
	n			
Aggregate Size mm		tors that determines the har spacing and	d the gap for third laye	. Variation in required for
Maximum Aggregate	e size. One of the fact			
Maximum Aggregate minimum binder con	e size. One of the fact ntent in kg / m3 for n	nixes with various W/C ratios and Max		
Maximum Aggregate minimum binder con	e size. One of the fact ntent in kg / m3 for n			
Maximum Aggregate minimum binder con aggregate size you n	e size. One of the fact htent in kg / m3 for n may need to increase t	nixes with various W/C ratios and Max the cement content to maintain equivale	ence which in turn lead	s to more cracking.
Maximum Aggregate minimum binder con aggregate size you n W / C ratio	e size. One of the fact ntent in kg / m3 for n may need to increase t 20mm	nixes with various W/C ratios and Max the cement content to maintain equivale 40mm	ence which in turn lead 14mm	s to more cracking. 10mm
Maximum Aggregate minimum binder con aggregate size you n W / C ratio 0.6	e size. One of the fact ntent in kg / m3 for n may need to increase t 20mm 280	nixes with various W/C ratios and Max the cement content to maintain equivale 40mm -20	ence which in turn lead 14mm +20	s to more cracking. 10mm +40
Maximum Aggregate minimum binder con aggregate size you n W / C ratio 0.6 0.55	e size. One of the fact ntent in kg / m3 for n may need to increase t 20mm 280 300 - 320	nixes with various W/C ratios and Max the cement content to maintain equivale 40mm -20 -20	ence which in turn lead 14mm +20 +20 +20	s to more cracking. 10mm +40 +40

Concrete Placing Temp Tp

UK normal value is 20 deg so Tp - Tm = 5 deg. T1 change is approx 75% x (Tp - Tm). Select Tp & Tm appropriate to the location. To CIRIA 91, with PFA additive, this is the concrete curing temp that must be added to the T1 calculated using the OPC part of the mix .

Min T1 Values Apply to EC2

C660 act Factor

BS8007 and C91 impose minimum T1 = 15 deg for Slabs and 20 deg for Walls whereas EC2 and C660 does not. This option allows these values to be applied to EC2 and C660. A concrete in tension act factor of 0.8 is recommended by P Bamforth.

Long Term (LT) Drying Period (DP) In Years

Period for Ultimate Long Term Drying Shrinkage and Thermal and Autogenous strain. This value can be adjusted separately from Design Life to show the effects. Beyond 30 years the drying shrinkage is small but the worst effect is still the Design Life (if > 30 yrs).

LT fctm & ɛcap based on 28D or nr of Years

C660 examples use the 28 Day values for Long Term design check. This facility allows a similar design approach but also allows the user to see what happens if the higher LT values are used. Note. blended mixes can develop high LT strengths.

Edge Restr Min Age for Min %As1/BZ Value 3D, 28D, LT

User can specify a minimum age that is used for calculating the Minimum %As1 / BZ for Edge Restraint Shrinkage. The earliest (default) age is 3D. For Edge Restraint, the Min% relates to the age at first cracking. These cracks then increase in width with more strain at later age.

End Restr Min Age for Min %As1/BZ Value 3D, 28D, LT

User can specify a minimum age that is used for calculating the Minimum %As1 / BZ for End Restraint. 28D or LT is suggested for End Restraint. This is because individual End Restraint cracks can form at later ages, so the age at last cracking determines the Min%.

Fatigue

Cycles x 10E6 or N/A

Frequency of oscillation x 10E6 or N/A if no Fatigue. i.e. for 4E6 enter 4. High values will reduce allowable fatigue stress range.

σ Min / Max or N/A

Program calculates the ratio of the oscillating stress range to the maximum stress (tension or compresion). So if $\sigma \min / \sigma \max = 0.9$, 10% of the stress range oscillates. The program shows the allowable ult reinforcement fatigue induced stress range $\Delta \sigma sk$ as per Fig 6.30 and then adjusts Fyk and Fyd to ensure this is not exceeded. Concrete Ult 28 day strength is reduced as per Equs 6.76 & 6.77.

EC2 INTERACTIVE DESIGN TOOL

INFORMATION

HAC-PRO 1 - 5 - 2

INFO 5/16

Copyright © 2009 HAC

INFORMATION FROM COMMENT BOXES

GLOBAL OUTPUT

Reinforcement

Fyk - Yield Stress - N/mm²

This is the Yield Stress used in design which may be reduced by fatigue.

Fyd - Max Stress - N/mm²

The value used in ult design taking into account material FOS.

Δσsk - Fatigue Reduced Stress - N/mm²

The part of the steel stress range that is subject to fatigue reduction.

k3 Fyk - Max Service Stress - N/mm²

Max Service Stress Value = $k3 \times Fyk$. The program will display a value above this in red in the W1 Crack Width box.

Concrete

Туре

A standard concrete binder mix notation. This is used in assessing durability and cover. The procedure is quite complex but the program works this out and displays it here.

Nominal Cover

This is the minimum value specified to the contractor on the drawings. Normally this will be increased to the next 5mm but check other code requirements.

C fck / fcu(t)

Cylinder / Cube Strengths in N/mm2 allowing for fatigue and time from casting. For t < 28 days this will be equivalent strengths used in analysis. This feature allows the display of strengths at different ages.

EC2, BS Ec (t)

EC2, BS Equivalent static Concrete Modulus in KN / mm2 at time t in days. Based on the 28 day cube strength input value. The values have also been adjusted for fatigue if relevant. They have not been adjusted for Creep. See MR Creep Ratio item for reduction used in Applied Forces Crack calculations

EC2, BS MR (t)

Modular Ratio used in service forces analysis to calculate crack widths = Es / (Ec/(1+Creep Coefficient)) or Local Values EC2 & BS values. Early age values will be slightly higher than 28 day values.

Note 1: The difference between EC2 and BS values means the service analysis results, i.e. Neutral Axis X and reinforcement stresses and strains are slightly different.

Note 2. Econc value used to calculate MR includes a creep ratio value. If this is 1.0 the Ec value is halved and the MR values are similar to traditional values. However there could be a case for using the EC2 Creep Coeff values below which are closer to 1.5 in some cases. If Local is entered for CC value, the actual calculated local value of CC is used.

EC2, BS %As1/BH

EC2, BS min As1 % This is As1 (which is F1 & F1+ reinf) / BH These are the 28 day values, since the design will be based on those.

EC2, BS %AsL/BSr

EC2, BS Min %Area for shear legs on plan = Area of leg / (Spacing in Longitudinal Dir x Spacing in Transverse Direction) These values are based on the 28 day concrete properties

EC2, BS Min Lap

EC2, BS Code Minimum which may be less than the value specified in the Global Input. Note this is based on the assumption of good bond.

These values are based on the 28 day strength stress values. The values in the design cases will be based on the reduced stresses. Obviously, the loading in early days will be less than at 28 days and after.

HAC-PRO 1 - 5 - 2

INFO 6/16

Copyright © 2009 HAC

INFORMATION FROM COMMENT BOXES

Concrete Cont.

EC2, BS Max Shr

EC2, BS Max shear at Column Support Face. Note EC2 gives a higher value than BS8007 for the same strength (as a result of the National Annexe value for αc). See below.

EC2 also allows higher strengths than 32 / 40 to be considered in Shear design whereas BS8110 does not. Therefore it is possible that the use of higher strengths may become more commonplace under EC2 for non crack sensitive structures.

Note:- higher strength means more cement = higher risk of cracking which is therefore problematic for water retaining or excluding structures.

For EC2 design, this program uses a value of 1.0 for αc for shear as per the National Annexe. (0.85 is used for flexure and compression).

These values are based on the stresses allowable at time t.

3 Day, 28 Day & Long Term Ult Tensile fct

3Day, 28 Day & Long Term Ultimate Tensile Strength in N/mm2

3 Day , 28 Day & Long Term Ultimate Ten µε

3Day, 28Day & Long Term Ultimate Tensile MicroStrain Capacity. This is determined by Aggregate type and strength.

3 Day , 28 Day & Long term Autog µɛ

3Day, 28Day & Long Term Autogenous Shrinkage MicroStrain This is the shrinkage as a result of the concrete setting. It is not a temperature or drying strain. The chemical reaction results in a small change in volume.

Linear or Design or Max Service σ Limits

Linear & Design & Max Service Stress Value (k2 or K or K1) x Fck

Above k2 x fck (i.e. 0.45) a non linear creep factor should normally be applied to the basic creep coefficient.

This will in turn increase the Modular Ratio and reduce the crack widths by 0.1%. i.e. 0.2mm becomes 0.198mm - negligible difference.

Since the max NLCF is 1.252 at 0.6fck it is sufficiently accurate to use the linear value throughout as it is not practical or worthwhile to introduce non linearity into this spreadsheet.

This will give the correct values within the crack width assessment range.

Bearing in mind a fixed value of 1.0 is often proposed for the CC, the loss of accuracy is not significant.

The chart on the N & M sheet has the option to switch the non linearity beyond 0.45fck on or off so the effect can be seen.

Thermal & Creep

C660 Creep Coefficient K1

This is the value used for thermal calculations as opposed to flexural calculations. This is equivalent to reducing the restrained strain by 35%, See C660 Cl 4.9.1.

C660 Sust Load Coeff K2

This is the early age value that has been incorporated into the C660 equations.

C91 GGBS T1 Factor Used

Factor which has been used in the C91 method to multiply the Full OPC T1 value as a result of effects due to GGBS. It is displayed for information. PFA is calculated in a different way, see PFA comment box.

Aggregate α x 10E-6

Average Aggregate coefficient of expansion

HAC-PRO 1 - 5 - 2

INFO 7/16

Copyright © 2009 HAC

INFORMATION FROM COMMENT BOXES

Thermal & Creep Cont.

C660 Bond Factor fct / fb

Thermal reinf bond factor as per C660. This is the ratio of tensile strength / bond strength. EC2 suggests 0.8 where good bond is achieved and 0.8 / 0.7 i.e. 1.14 if that cannot be guaranteed. C660 uses the higher value. This factor is included to allow benchmarking against BS8007. You must use 1.14 to comply with CIRIA C660.

3 Day, 28 Day, LT pcrit %As / BZ

Minimum default value per BS8007 Zone or EC2 k z H i.e. Z. These values are used where crack width control due to Indirect Actions (Shrinkage) is required. Otherwise use the values in the Concrete section above. For C660 these zones are as per table 3.1. See comment against Zone Depth. The Min % is 100 x the ratio between the 3 Day or 28 day or LT Concrete Tensile Strength and Reinforcement Grade (Typically 500 for HYS). There is very little difference between BS and EC2. The value appropriate to the time of first cracking for Edge restraint and the latest crack age for End Restraint is used. The 28 day value should be used unless 3 day cracking is absolutely certain. For Internal Restraint, the 3 Day values are used. These values are then multiplied by the Stress Distribution Factor kc for As1 / BZ compliance check. For End and Edge Restraint, kc = 1, for Internal Restraint kc = 0.5 See Crack Section for a fuller explanation.

Design Check Age (t) pcrit %As / BZ

EC2 only. Minimum default value for Direct Actions i.e. Forces. The value appropriate to the specified design age (t) is shown. The normal age for Direct Actions (M & N) is 28 days. These values should then be multiplied by the Stress Distribution Factor kc for As1 / BZ compliance. The kc value for Direct Actions will vary from a min of 0 for High Compression to 0.4 for No Axial to a max of 1.0 for High Tension. See Crack Section for a fuller explanation.

LOCAL INPUT

Design

Input - S=Service U=Ultimate

It does not matter which you choose. The input is usually Service for a water retaining or excluding structure. Ultimate would normally be chosen for ordinary design. See Load Factor comment.

Load Factor = Ult / Serv

The ratio between factored forces and service forces for the Design Case considered. This allows both Service and Ultimate Designs to be carried out at the same time. This would be a composite value where there is a mix of Dead and Super Loading. If the design is not crack critical and the loads are entered in ultimate, a reasonable estimate would be acceptable i.e. 1.5 for offices and 1.45 for domestic.

Head of Liquid or N/A

This is used with the global tightness class in EC2 Pt3 to calculate the allowable crack width based on a ratio between head and section thickness (H). For designs where this is not relevant enter N/A.

Col-Leff or Bi-Ax or N/A

Effective length taking into account end conditions. See cl 5.8.3.2 (2). Max = 2I Min = 0.5I. If bi-axial or slenderness assessment is not applicable enter N/A. A slender column or strut assessment will only be undertaken if a value is entered here. Leff notation is used to avoid confusions between codes (BS L = Io, Leff = Ie, EC2 L = I, Leff = Io). Enter Bi-Ax if a bi-axial analysis is required. This tells the program to consider the additional moment as a bi-axial moment.

Restraint

C91 or Edge, End, Int (C660)

If C660 method is used, enter End or Edge or Int (for Internal) restraint. The T1 values and thermal / shrinkage crack width design will be based on this type of restraint. If C91 method and T1 values are used, enter C91. C660 has been written to be used with an EC2 based design and C91 should really be used with a BS design but either can be used in this spreadsheet FOR COMPARATIVE PURPOSES ONLY during the familiarisation process. C91 should not be used with a commercial EC2 design. However it is permissible (and even advisable) to use C660 with BS designs now. However the large amount of reinforcement that is required with the End restraint method must be pointed out to and discussed with the client.

HAC-PRO 1 - 5 - 2

INFO 8/16

Copyright © 2009 HAC

INFORMATION FROM COMMENT BOXES

Design Cont.

End Restrained Length Lr or N/A

End Restrained Length Lr or N/A. This will allow the length of the section to be taken into account in calculationg the end restraint crack width. For an infinite length enter N/A. For Edge and Internal restraints enter N/A.

Short Term Restraint - R1

The restraint that exists while the concrete is curing.

This is usually safely taken as a max of 0.5 for full restraint to BS8007 / CIRIA 91 because it includes a creep factor =0.5.. C660 procedure is more sophisticated and reference must be made to C660 however, the same concept is continued but 1.0 = Maximum for end restraint but see below for edge restraint. C660 then applies a creep factor of typically 0.65.

C660 End Restraint gives high crack width values compared to C91 and since the cracked section crack widths are dependent on the tensile strength of the concrete, the adjustment of restraints does not make any difference unless the section is uncracked. TheC660 Edge restraint gives similar values to C91 & BS8007 for similar R x creep values. but note that R will be higher than 0.5 for a thin wall cast against a large foundation if the edge restraint formula is used. i.e Rjoint = 1 / (1 + (New ht x New H)/(Exist Width x Exist Depth))x(New Ec / Old Ec))

4.7.2 allows a simpler approach and takes New Ec / Existing Ec to be 0.7 i.e.

For a wall cast against the edge of a slab or For a slab cast against a slab

 $R_j = 1 / (1 + 0.7 x (New H / Old H))$

For a wall cast remote from the edge of a slab

Rj = 1 / (1 + 0.7 x (New H /2x Old H)) i.e. the existing slab depth is doubled.

T2 / 28 day Restraint - R2

The restraint after seasonal temp drop which is taken at 28 days. This can be less than the short term value particularly in the vertical direction for walls where there will be no restraint from previous pours and the whole structure will move together and may even be in compression all the time. However if the structure is not likely to be complete, R2 should = R1.

Long Term Restraint - R3

The Restraint of the completed structure. This the Long Term Restraint that will be present during the drying phase. This can be different to R1 or R2.

Formwork - Grnd, Ply, Steel

The formwork used or if it is cast against ground. This effects the T1 value.

Drying Faces & Relative Humidity %

This controls the drying shrinkage value. Enter the number of exposed faces followed by the average Relative Humidity % i.e. 1 & 85. If drying only occurs from one face it will be less than if both faces are exposed. If a value of 1 is entered, ho = 2H. The average %Rh value is used taking into account the conditions on each face. The water retaining face would be at 100% Rh whereas the other face could be within a building at 60% Rh. The value used would be 80%. The common UK value for external use is 85% and for a dry internal environment it could be as low as 45%.

Curing Temp - Value or Auto

The program can calculate the T1 values according to BS8007 & C91 or C660 within 5%. C660 introduces different methods for calculating T1. These values differ from C91 slightly in respect of walls but more so for slabs where the results are typically 20% higher.

In order to design to C660 the C660 value must be used. The data from the published charts for Ply and Steel for Cem1, GGBS and PFA has been entered manually (a lengthy process). The variations in temperature values appears to vary between 220 kg/m3 and 500 kg/m3 in a linear and even manner so the values have been interpolated to create a bespoke single curve appropriate to the binder mix and formwork and this is displayed as a chart and used to calculate T1. Note, in the case of a slab, the wall & steel curve has been shifted to reflect the fact that the thickness of the slab is multiplied by 1.3 before calculating the T1. So the slab thickness appropriate to the wall curve will be thickness / 1.3.

Therefore the user has a choice.

If you want the program to calculate and use the appropriate Ciria values enter Auto.

If you want to have control over T1 and use another program or the Ciria document or program directly, enter the value. IF H slab > 800 or H wall > 1000 Calculate T1 using CIRIA 660 adiabatic based Spreadsheet.

Seasonal Temperature Drop

The worst case is summer concreting and this must be assumed unless it can be guaranteed otherwise i.e. very short lead in. The UK drop is usually taken as 20 deg for externally exposed elements and 15 deg for internal or cast against the ground. Worse conditions can occur in the UK for short periods. The program assumes this drop to occur by 28 days.

HAC-PRO 1 - 5 - 2

INFO 9/16

Copyright © 2009 HAC

INFORMATION FROM COMMENT BOXES

Section

Type - Slab, Beam, Wall, Col

The type of section will effect the thermal calculation. The selection of Beam will show a top closer link. The selection of column will show a link all round and an intermediate cross link if centre bars are specified.

Face 1 - top, bot, int, ext, any

Face 1 is the face that is in Tension due to bending only. It defines the location of bars, cover and results. In the case of slabs it affects the zone depth and hence the crack width.

Depth H

The overall section depth

Width B

The overall section width. For a column and beam this would be the exact width on the drawing and the reinf and legs should, ideally be specified as an exact number (<50). For a slab or a wall, this dimension can be the width used in a grillage analysis (which may not be 1000) or the output width from Finite Element Analysis or other analysis (which would normally be 1000).

Reinforcement

F1 ϕ or ϕ 1 & ϕ 2 for alt bars

Face 1 bars closest to Face 1. If, for example, 25 and 20 dia alternate bars are used they should be entered thus. 25 & 20 i.e. with a gap between the 5 and & and 2. Min dia is 10

Bar spacing > 49 or nr < 50

Enter spacing or number of bars. The program will assume that a value less than 50 is the exact number of bars. Exact numbers are appropriate for beams and columns where the section width is the real width as opposed to an element width from the analysis of a slab or wall.

Cover to F1 main bars

The distance from F1 bars to F1 concrete face.

F2 ϕ or ϕ 1 & ϕ 2 for alt bars

Face 2 bars. Alt bars are entered thus for example 20 & 16. (With a gap between the number and &). Min dia used is 10. If not required enter 0.

Bar spacing > 49 or nr < 50

See comment for Face 1. A value < 50 will be taken as the exact number.

Cover to F2 main bars

The distance from F2 bars to F2 concrete face.

Extra ϕ or $\phi 1 \& \phi 2$ for alt bars

This gives the facility for Extra bars in a third layer L3 or bundled. Alt bars are entered thus, 20 & 16 (with a gap between the number and &) Min bar size is 10. Or enter 0 if not required.

Bnr, BEnr, Lgap, S1, >3 =Tors

The Type of Extra bars.

- B1 = Bundled once with the main F1 bars. B2 = Bundled twice with the main F1 bars
- BE1 = Bundled once with the main F1 & F2 bars.

BE2 = Bundled twice with the main F1 & F2 bars

Lgap = Bars in 3rd Layer (L3) with a gap in mm. L25 means a 25mm gap. Min is (largest bar or 2/3 Agg Size) x 1.1

S1 = Bars placed at mid depth, one each side. Use in Columns to give 8 bars.

>3 = This adds additional longitudinal bars evenly around the perimeter for Torsion Only

HAC-PRO 1 - 5 - 2

INFO 10/16

Copyright © 2009 HAC

INFORMATION FROM COMMENT BOXES

Shear or Torsion or Punching Shear

Shear Type

Normal Shear = S. Punching Shear = P and i for internal, e for edge, c for outer corner, r for re-entrant corner. Torsion = T

Legs - ϕ or nx ϕ or ϕ 1 & ϕ 2

Shear Leg dia. If used in longitudinally bundled pairs enter 2xdia if in 3s enter 3xdia. i.e. no gaps. Min dia is 10. For EC2 Punching Shear there is the option of specifying a smaller dia for the alternate dias for the radial bars. This is relevant if additional radials are needed to satisfy %As and tangential spacing rules. The first dia φ 1 is for the main shear resisting legs which must satisfy the requirements at 2.0D from the support. The other criteria can usually be met by providing intermediate radials of a smaller dia i.e. φ 2. The savings can be worthwhile. If only one dia is entered the intermediate radials will be the same dia as the main radials. For BS enter a single dia which will apply to both failure zone perimeters.

Legs - long or radial ctrs ($\leq 0.75D$)

Leg centres measured in direction away from the support = longitudinal for normal shear or BS punching shear or radial for EC2 punching shear. Sr notation is used for both cases. Ensure spacing is not more than 0.75D. If it is, the value of D in the output will say < 1.33Sr. For BS Punching shear the centres must be 0.75D to suit the 0.75D outward interval of failure checks.

Legs - long or radial start (≤0.5D)

Longitudinal or radial distance from support to the first leg. For EC2 this is 0.3D to 0.5D. For BS it must be 0.5D.

Legs - transv ctrs \geq 50 or nr < 50

Leg Transverse centres or number. For a beam or column or EC2 punching, a number is used. For a slab or BS punching shear, spacing is used. A value > 50 = centres. For EC2 punching, this is the nr to satisfy STRUCTURAL requirements at 2D from the support. Note this is the number of Legs i.e. a link has 2 legs. For BS it is nr or spacing of the inner failure zone

For Punching Shear Only - Legs2 - EC2 - additional transv nr ≤48 or centres > 49

EC2 - nr of additional radials to satisfy min %As and tangential spacing rules. i.e. as the distance from the support increases the spacing increases. For BS it is the nr or spacing of the outer failure zone perimeter (can differ from inner perimeter).

Punch X dim or Strut Angle

For Normal Shear enter Strut Angle in degrees. For EC2 this can be varied between 45 and 21.8 but is usually set at 21.8. It has no effect in BS analysis but a value of 21.8 is suggested to ease switching to and from EC2 and to assist in the detailed comparison sheet. A higher value will reduce the EC2 capacity but will reduce the shear shift value (i.e. the tension reinforcement projection beyond flexure requirements will be less). Therefore for nominal / low shear requirements a higher value is worth considering. This is not adjustable (by EC2) in Punching shear. Reference to EC2 6.4.1 indicates that a value of 26.6 degrees is inferred in the design. This should be used for assessing spread through the section and column heads. see figs 6.17 and 6.18. The shear shift requirement does not apply to punching shear.. For Punching Shear enter Support Dimension X (L to R on dwg) dim or circular support Dia in mm.

Punch Y dim, Dia or Leg Angle

For Normal Shear enter the inclination of the vertical legs. This is used by EC2 but ignored in BS. The usual value is 90 but if the leg is leaned back to the support the value is reduced.. This is not adjustable (within this program) for Punching shear and a value of 90 is used. For Punching Shear enter Y Dim. If a circular support is used type Dia (not the value but the letters Dia).

(V between xD & 2D) / VED = Vratio

EC2 Only. For xD values less than 2.0. EC2 factors normal shear between 2D & xD by a maximum of 0.25 or xD / 2D. This is useful for corbels and pilecap design where the ratio will often be 1.0. For punching shear, it allows the program to assess how much of V is outside 2D so the 2vc at 2D capacity ratio limit can be modified. If not applicable or for BS, enter N/A or 0.

Nr of Effective Depths from Support

xD = Multiples of effective depths from the support to shear check. For Punching Shear, it is generally used to check outward perimeters. The normal shear default is 2.0 but a higher shear cap value (BS only see below for EC2) can be found if the load is closer to the support and a lower xD is used. The value is used in punching shear to check the values outwards or inwards from the control perimeter values (2.0 for EC2 and 1.5 for BS). In both codes the concrete punching shear stress is enhanced within the control perimeter. Note. EC2 deals with normal shear loads within 2D of the support by reducing the load whereas BS enhances the capacity. This program enhances the capacity within 2D for BS. For an EC2 design, if an xD value less than 2.0 is entered, the program uses the Vratio to calculate the Shear between 2D and xD from the support and factors it by a max of 0.5D (2D (i.e. 0.25) or xD / 2D. This is very useful for corbels and pile caps where Vratio = 1.

HAC-PRO 1 - 5 - 2

Copyright © 2009 HAC

INFO 11/16

INFORMATION FROM COMMENT BOXES

Shear or Torsion or Punching Shear Cont.

Punch udl w (kN/m²) or EC2 Teff

UDL on slab for punching shear. This value x the area within the perimeter being checked is removed from the applied punching shear load when checking at specified multiples of effective depths from the support. This is particularly useful for a flat slab supporting a head of water or heavy super loading.

Punch MED X - X (kNm) or N/A

Enter an MEDxx value > 2 and the β value is calculated according to BS8110 Cl 3.7.6.2 Equ 25 or EC2 Cl 6.4.3 or Enter Def to make the program use the Default β values according to the location of the columns as per the table on the Main sheet i.e. if Pi is entered β =1.15. or Define a β value <= 2.0 yourself or Enter N/A for normal shear or to set β = 1

Punch MED Y - Y (kNm) or N/A

Column MEDyy Moments. Follow similar procedure to Mxx moments.

Forces

Shr V or Pun (kN) or Tors T (kNM)

Applied Shear, Punching Shear or Torsion Value. The program calculates and applies the appropriate β value automatically.

Axial Force N (kN) Tens is neg.

Axial Force acting in centre of section.

Primary Moment M (kNm)

The Primary Moment acting about the primary axis causing tension to occur in Face1. A negative value may be entered to demonstrate which side of the element is face 1. In EC2 Biaxial, this value is adjusted until the Cap is 1.0 about each axis. This is also the maximum column moment (MC2) in a slender design.

Bi-Axial, Slender Col MC1 or Redistribution

Bi-Ax or Mc1 (kNm) or $0.7 < \delta < 1$

If N/A is entered for Leff (effective length) and N = 0 and a δ value > 0.7 or < 1 is entered here it is assumed to be a redistribution factor. If the section is subjected to axial forces (tension or compression), leave blank to ensure the centre line equilibrium method is used. If a value is entered for Leff, the value here will be taken as the lesser end moment value for slender design (MC1). If Bi-Ax is entered for Leff, the value here will be Bi-Axial. If not required leave blank.

Results

Shear - Pun / Capacity at xD or Ult (S or P or T) / Capacity at xD

The applied ultimate value / the ultimate capacity value for Normal Shear or Punching Shear or Torsion. If the input is in Service (S) it is automatically converted to Ultimate by the program using the specified load factor. The Capacity is calculated at a distance of xD (multiple of Effective Depths) from the support. This is particularly relevant for punching shear since the perimeter and hence concrete capacity will increase as xD increases. Normal shear will usually be checked at 2.0D using the full shear value. BS allows an enhancement on the normal shear capacity within 2D but EC2 does not (it reduces the value of loads applied within 2D). See comment about loads within 2.0D for EC2 design in the Effective Depth Multiplier Input box.

For Punching Shear, the capacity is also calculated on the perimeter at the face of the support (Uo) based on the maximum shear stress values displayed in the global output (approx 5 N/mm2 depending on concrete grade). The displayed capacity factor will be based on the minimum of the capacity at Uo or the chosen perimeter, usually U1 (2.0D for EC2 and 1.5D for BS). As a further guide, the output will display Uo Fail if the capacity exceeds 1.0 due to failure at the column head. This is done because this type of failure is catastrophic and also it enables the user to find this value by increasing the shear value until this message appears. Also, if the section fails because of this, no amount of extra reinforcement will help and the slab thickness needs to be increased or a column head is needed or a larger support is needed. This situation can occur with small section driven piles. Also note, EC2 uses the circumference of a circular support as opposed to the enclosing square. The drop in capacity can be seen by switching between Dia and a Y dim value = X dim value.

It is also recommended (by the author) that the capacity factor against failure at the column head for BS designs based on 40 N/mm2 or higher should not exceed 0.90. This is because for BS designs the maximum cube strength that can be used for shear is 40 N/mm2, so if your design is based on 40 N/mm2 you will not be able to use evidence of higher strength on site to improve the situation if you find the design requires any more capacity. This does not come up as an alert.

Note also, that in EC2 punching shear with leg reinforcement, 75% of the concrete without legs resistance is included in assessing the capacity. This is different to normal shear where no contribution is allowed once legs are added.

HAC-PRO 1 - 5 - 2

INFO 12/16

Copyright © 2009 HAC

INFORMATION FROM COMMENT BOXES

Results Cont.

Ult (Axial & Moment) / Capacity

The applied ultimate moment / ultimate moment capacity (Mx / Mu) assuming the ultimate capacity ratio of N to M is the same as the applied ratio. It is fully appreciated that a different factor may be found if either N or M are increased separately but as the ratio becomes closer to 1 this is less relevant. This is the only practical way the factor can be displayed in one cell.

This involves projecting the N - M line until it strikes the N - M capacity curve. It is similar in concept to the Unity Value method used in steelwork design. It enables compliance to be demonstrated without a diagram (although a diagram is available to the user as the data is entered).

This method uses the principle that all of the key points where the reinforcement stress is locked (because the strain x Es value is beyond Fsmax) at either max compressive or max tension stress values can be defined by the anticlockwise increasing angle made between the N - M ratio line and the Origin (M = 0 and N= 0). This is called the Polar Angle and this is 0 when N = 0 and M = Neg and 90 when N = Neg and M = 0 and 180 when N = 0 and M = positive etc. These points can be seen clearly in colour on the large scale N - M diagram. If the large scale Ult Stress and N - M diagrams are viewed and examined together, the procedure is quite clear.

The ratio of N / M is defined by the input so the Polar angle is therefore easily calculated by the program. The program calculates the Polar angle for all of the key stress lock points as well as the rebar start and finish points (to calculate displaced concrete adjustment). The program is therefore able to compare the applied N/M angle with these pre-defined angles and assess whether the reinforcement stress is locked or relates to the strain diagram in order to fix the variables in the master cubic equation. The program then solves the cubic equation using complex number theory. It filters the three results to display and use the correct value.

Where redistribution is used, i.e. $0.7 \le \delta \le 1$ with Axial (N) = 0, the value of Mu used is the lesser of the compression capacity (Mc) or Tension Capacity (Mt). If the balanced value of X (Xo) < maximum value of X (Xu), Xo is used and Mc = Mt. Since Xo self adjusts to ensure equilibrium about the centre line and no out of balance axial force, Fc = -Ft. Therefore, Mc = Fc x lever arm = Mt = Ft x lever arm. Therefore it is not possible for Mc > Mt unless Xo is locked when D - ($0.5\lambda X$) > 0.95D or X < $0.1D/\lambda$. Where λ is typically 0.9 for BS designs and 0.8 (if fck < 50 N/mm²) for EC2. This gives X < 0.111D for BS and X < 0.125D for EC2.

Where a slender column or strut analysis is performed. The program automatically calculates the moment at mid point including 2nd order effects. This value is displayed in the output so the user can see the effect and re-use the value in a bi-axial analysis if required. The capacity ratio is based on the maximum of that value or the original maximum end value. The charts update if required by shifting the ratio line to suit the revised moment.

Serv F1 Crack Width or Info

Face 1 crack width due to applied service forces. If the forces are entered as ultimate the service analysis is based on Forces / Load Factor. For both codes W = Crack Spacing x Strain (after deducting conc in tension stiffening) See detailed sheet. If the service reinforcement stress exceeds the maximum alowable (= k3 Fyk), the stress will be displayed (-ve = tension) instead.

Serv F2 Crack Width or Info

When redistribution is specified by inserting a value <1.0 & >0.7, W2 crack widths are not relevant and this cell is used to advise the designer if the Moment Capacity is controlled by failure in Tension or Compression. If Mt > Mc the section could fail in compression first which is not advisable as the failure will be sudden. It could also indicate more tension reinforcement than is required. See detailed sheet. If a slender column analysis is performed by entering a numerical value in the Leff cell and if the column is slender, SLEN will be displayed in this cell. If the service concrete compressive stress exceedes the Design Value (k Fck), the value will be displayed in blue. If it exceedes the maximum value (k1 Fck) the value will be displayed in red.

X - serv or ult (depends on input)

This will display the service elastic value if Service i.e. S is selected as the Input type. It will display a negative value in high tension cases where the value of X is beyond Face 2

Values

Fs1 & Fs2 Stresses in N/mm²

The reinforcement stress in As1 and As2 which relates to the Input type (Ultimate or Service)

S transverse / D The transverse spacing / D.

Sp/(Dx20xStr Sys)

Max Span / Eff Depth Ratio Factor (As BS8110) for fck and reinforcement %. For EC2, It can be converted to the appropriate span type by multiplying by 20 (the simply supported value) and by K (Appropriate Default Structural System Value).

HAC-PRO 1 - 5 - 2

INFO 13/16

Copyright © 2009 HAC

INFORMATION FROM COMMENT BOXES

Values Cont.

%AsLegs / BSr

Used in normal shear to check minimum AsL% on plan.

θ, EC2 Bi (Mb/Mr)^a or Med

EC2 ONLY Min θ Shear Angle allowing for tension (will be 33.7° for pure tension). Cell will display a red alert if angle is greater than the input angle or (Bi-Axial Moment / Moment of Resistance in Primary Direction when combined with Axial Load)^a. a is a coefficient or slender column mid span design moment including 2nd order effects.

% As1 Reinf / BH

0.01 x (Area of F1 and (F1+ or 50% of Column Side Bars)) / Full Cross Section Area

Lap Length x dia

Displays the Global minimum value unless factors such as top cover, bar spacing and use of lower steel or concrete stresses require a greater value. If the Thermal Reinforcement is equal to the critical ratio, the lap length will be 1.4 x code minimum which could also exceed the Global value. See display settings in Global Input Data.

EC2 Shear Shift

EC2 Only For Normal Shear, the moment envelope is shifted by this distance to increase the length of the tension reinforcement bars. In effect it increases the anchorage length. Increasing the strut angle will reduce this distance. See Shear.

St / D at Dria

Punching Shear Only EC2 Design Only

St / D Check at the inner start point for additional radials or the main radials start point if there are no intermediates. St / D = The Tangential Spacing / Effective Depth value at the entered xD distance from support. This must be <= 1D outside 2D from support and <= 0.75 D inside 2D from support and it is this value that often determines the need for the intermediate radials. These values are based on the main radials in order to demonstrate compliance.

St / D at Dro

Punching Shear Only. EC2 St / D check at outer perimeter of radials. St / D = The Tangential Spacing / Effective Depth value. This must be <= 2D outside 2D from support and it is this value that often determines the need for the intermediate radials. BS St / D check on a typical perimeter

AsL% at Dria

Punching Shear Only EC2 Design Only

%AsL check at the inner point of the additional radials or at the start point if they all go to the start point. The Area of a leg / (Tangential Spacing x Radial Spacing) This is based on the main radials only even though the additional radials will be present and must be > min value so that it demonstrates that the next ring inwards will comply without the additional radials. This criteria also determines the need and extent of additional radials.

AsL% at Dro

Punching Shear Only. EC2 %AsL check at outer perimeter of radials. The Area of a leg / (Tangential Spacing x Radial Spacing) must be = > min value. This criteria also determines the need and extent of additional radials. BS %AsL check on a typical leg perimeter

xD at Dria

Punching Shear Only. EC2 Only. The number of Effective Depths from the face of the support to the inner (start) point of the additional / intermediate radials. Additional radials are often required to satisfy min %As or spacing rules so they will not normally be required from the start.

xD at Dro

Punching Shear Only. EC2 Design Only. The Number Effective Depths from the Support Face to the outermost radial leg. This must be within 1.5D of the point where the section is adequate without legs (Dout)

xD at Uout

Punching Shear Only. The nr of Effective Depths to Uout, where the concrete is alone is adequate for shear.

Perim at xD

Punching Shear Only. The shear perimeter length according to the entered xD value which is usually 2.0

HAC-PRO 1 - 5 - 2

INFO 14/16

Copyright © 2009 HAC

INFORMATION FROM COMMENT BOXES

Values Cont.

β Values

Program calculates the appropriate values according to the column moments MED. If no values ar entered for MED X - X and MED Y - Y the code defaults for nearly equal spans are used. The program multiplies the input VED x β .

Data

Reinf Area of F1 & Extra (mm²)

This includes all of the reinf in the Face 1 half of the section. It includes 50% of any column middle side bars.

Equiv or Avg Effective Depth

This is the equivalent value taking into account bars in the third layer. This is used in shear effective depth multiples and Span / Effective Depth calculations. It will equal D1 if no Layered or Side bars are specified.

For Punching Shear the reinforcement and cover is adjusted to reflect the average for each direction. This will cause the crack width for the section analysis to be different to the value when calculated individually.

EC2 Max Full Thickness Crack

This is based on the requirements of EC2 part 3 which takes into account tightness class, head of liquid and section depth H. This program considers Class 2 is satisfied by a maximum 0.05mm crack width (as opposed to a zero width) reducing to 0.025mm at a head ratio of 35 or more. (See CIRIA C660). The user and client must be satisfied with this approach.

Wk1 Strain Factor - Due to M & N

BS Strain Factor = 1 / (1+2(acr-Cover) / (H - X))

EC2 Strain Factor k2 (Only use Absolute Tensile Strain Values) = (Max Strain - Min Strain or Zero) / (2 x Max Strain). If X >= H, this value is Zero as crack width calculation is irrelevant. Cracking due to pure bending or 0 < X < H gives k2 = 0.5 and pure tension gives k2 = 1.

Min Direct Action % As1 B Z

EC2 The basic pcrit% is multiplied by kc.

kc is the factor that varies between 0 for high compression and 0.4 for pure flexure or flexure and axial to 1.0 for pure tension.

 σc is negative for tension and positive for compression

If σc is in tension kc = 0.4 (1 - $\sigma c / (2/3)$ (fcteff)) <= 1.0

If σc is in compression kc = 0.4 (1 - $\sigma c / (1.5)(H / H^*)(fcteff)) <= 1.0$

H* = Min of 1000mm or H

BS N / A is dsiplayed.

EC2 Bond Condition

The top part of ground slabs thicker than 250mm exhibit poor bond. The bond strength is then multiplied x 0.7.

EC2 INTERACTIVE DESIGN TOOL

INFORMATION

HAC-PRO 1 - 5 - 2

INFO 15/16

Copyright © 2009 HAC

INFORMATION FROM COMMENT BOXES

Thermal & Drying & Creep

Zone Depth

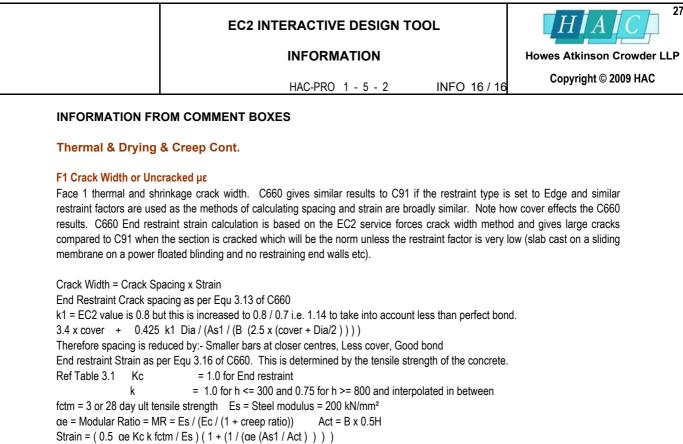
Thermal Reinforcement Zone Depth Z. C660 and EC2 consider this differently to C91 & BS8007.

This is the depth used to calculate Min As for all methods.

For C660, this is based on Table 3.1

 $\begin{array}{l} z = \text{HAC Tension factor} = 0.5 \text{ for End and Edge and N \& M } \text{ or } 0.2 \text{ for Internal} \\ \text{For End and Edge Restraints and N \& M} \\ \text{Z} = (\text{ k} = (1.0 \text{ for h} <= 300 \& 0.75 \text{ for h} >= 800 \& \text{ interpolated between})) x (z = 0.5) x H \\ \text{For Internal Restraint} \\ \text{Z} = (\text{k} = 1) x (z = 0.2) x H \end{array}$

Curing Temperature Drop


The Concrete Curing Temperature. This depends on the binder mix, formwork and Section Type. This program automatically calculates T1 to C91 and C660. C660 gives higher values than C991 and BS8007 in many cases.

Drying Shrinkage µStrain

Influenced by Relative humidity and binder content. Based on the Equation in EC2 Annex B2 Rel humidity Factor β RH = 1.55 x (1- (RH / Rho)³) RH = Rel Humidity Rho = 100 Basic Unrestrained Microstrain = ϵ cd, o = 0.85 x ((220 + 110 x αds1) x Exp(-αds2 x fcm / fcmo)) x β RH Final Drying Shrinkage microstrain after t days = ϵ cd(t) = β ds(t,ts) x kh x ϵ cd,0 If t is taken as Design Life in days, t = Design Life L in yrs x 365 and ts is taken as 0 say β (t,ts) = (365L -ts) / ((365L - ts) + 0.4 x ((ho)^1.5)) = t / (t + 0.4 x ((ho)^1.5)) Therefore β (t,ts) = 365L / (365L + 0.4 x ((ho)^1.5)). The published values in C660 and EC2 relate to 70 yrs ho = H if both sides are open to the atmosphere or 2h if only one surface is i.e. if cast against the ground or buried. Note that the max value of ho is 500mm and increasing ho reduces the drying strain (as one would expect). kh depends on ho and the values are below. The program interpolates between the values.

no	KN
>= 500mm	0.7
400mm	0.71
300mm	0.75
200mm	0.85
100mm	1.00
< 100mm	1.00

Cont.

= (0.5 ae Kc k fctm / Es) (1 + (Act / (ae As1))) For a 300 slab with 16 dia bars at 175 ctrs and MR = 12.2 say (for CR = 1) and fctm = 2.9 N/mm² For B = 1000mm and Z = 150mm and As =1149mm² = (1.45 x 12.2 / 200000) (1 + (150000 / (12.2 x 1149)) = (88.5 / 100000) (1 + 10.7) = 1035 Microstrain If Mr is based on 6.1 i.e. no creep allowed for = (44.25 / 100000)(1 +21.4) = 991 microstrain Therefore doubling the value of MR to match the value used in flexural crack width analysis increases the strain by approx 5%. Therefore strain is reduced by a lower value of fcm

One solution is to try and avoid cracks altogether - See Restraints Sheet.

If the drying shrinkage, restraints and temperature drop can be controlled it may be possible to keep the restrained strain within the strain capacity. This is a risky approach however because the margin for error is not very great and it only needs a small variation from the assumed parameters to push it over the limit and cause huge cracks. The spreadsheet can demonstrate this by displaying the restrained strain if it is less than the capacity. Increasing restraint will increase the strain to the point where it exceeds the capacity and then the crack width is displayed.

% As1 / BZ

0.01 x Area of F1 + L3 / Zone Depth x Section Width

EC2 Loaded Creep Coefficient

This is the creep due to constant loading which has the effect of reducing the effective Young's Modulus in concrete in the same way as the Creep Coefficient is used in the flexural crack analysis MR factor. Eeff = Ec28 / (1 + Creep Coeff). Ref EC2 3.14 and Annexe B

The value is influenced by:-

time of loading (to in days) - Early loading makes it worse. Time of assessment (t in days) - taken as life of the structure Relative humidity - high humidity makes it better. The depth of the element - deeper is better No of surfaces exposed - one is better than 2. The concrete strength - stronger concrete reduces the value The type of cement S or R or N (which is normally specified) the average curing temperature - assumed to be 20 deg - a lower temperature increases the value.

Since all of these parameters are within the spreadsheet it is possible to display this value which is immensely valuable because it affects the value of Eeff that must be used in calculating long term deflection. This allows the value to be calculated with a degree of confidence. The values agree closely with the results from fig 3.1 provided one uses the correct ho value. If the drying is only from one face ho = 2H otherwise ho = H. Therefore if the creep related deformation (or strain) due to sustained load = 1.5 x stress / Ec and the basic deformation due to load is stress / Ec. Total deformation = strain = 2.5 x stress / Ec. Therefore stress / strain = Ec / 2.5 i.e. Ec / (1 + Creep Coeff). It would appear that Ec / 2.5 is a good starting point.

These values are used in EC2 slender column analysis so it is particularly useful to have this information to hand. The displayed values include any adjustment (increase) due to non linear effects caused by high service compressive stress.

	EC2 DESIGN	TOOL	HAC
	BASICS		Howes Atkinson Crowder LL
	HAC-PRO 1 - S	5 - 2 BASICS 1	Copyright © 2009 HAC
ITEM	BS8110 & BS8007	EC2	
Actions - Variation in Time	Dead Super Abnormal	Variable Qk,i Super,	ksup SW, Water & Earth Snow, Wind, Thermal, Surch ons, Fire, Impact, Overload
Actions - Other Criteria	N / A	Origin Spatial Variation Nature & Response	Direct or Indirect Fixed or Free Nature & Static or Dynamic
Variable Factors	N / A	FactorsCombCl 1.5.3Frequ	cteristic1Liquidsination ψ_0 1ent ψ_1 0.9Permanent ψ_2 0.8
Ultimate Combinations & PSFs	Dead StabilityGenerallyDead StabilityUnfav1.50Fav0.90OtherUnfav1.40Fav1.00SuperUnfav1.60Abnormal1.10	Tables NA A1.2(A) & (B) Permanent γG,jEquStrVariables γQ,i Accompanying Accompanying	Fundamental Accidental Unfav 1.10 1.00 Fav 0.90 1.00 Unfav 1.35 1.00 Unfav 1.35 1.00 Lead 1.5 1.00 Main ψ011.5 1.00 Other ψ0i 1.5
Serviceability Combinations	Serv 1.0 Dead + 1.0 Super or worse combinations	Table A1.4 Characteristic Frequent Quasi Permanent	Permanent Gd Variable Qd Unfav Fav Lead Others Gkjsup Gkjinf Qk1 ψoiQki Gkjsup Gkjinf ψ11Qk1 ψ2iQki Gkjsup Gkjinf ψ21Qk1 ψ2iQki
Concrete Specification	Based on 28 Day Cube Fcu	Based on 28 Day Cylinder	Fck
Ultimate Design	Stress Block 0.9X Hinges about X = 0 throughout	Stress Block 0.8X If X > H, Stress Block Hing	es about X = 0.5H
Crack Width Limits	No Head (ho) / H Limits General Use 0.3 - 0.4mm Water Retaining 0.2mm Appearance 0.1mm Special 0mm	Class 0 0.3mm to 0.4 Class 1 Wk if X < 50r	n to at ho/H = 5, Wk = 0.2mm mm according to exposure nm or 0.2H else 0.3mm 0mm or 0.2H else Wk
Crack Width Design	W>=0.1mm tens = 0 to 2/3 N/mm ² W<=0.1mm tens= 0 to 1.0 N/mm ² No Limit on Tension Stiffening Strain calculated at Face Spacing relates to cover and ctrs	Tens = 0.4 Fctm = 1.16 N / Rectangular Tension Block Tens Stiffening Strain Limit Strain calculated at Reinf Spacing = 3.4 x Cov + Con	ed to 0.4 Fs / Es
Shear - Normal	45° Strut and Tie Method Can use conc cap with reinf Can increase cap if X < 2.0D No Shear Shift	Variable Angle (θ = 21.8° to Cannot use conc cap with Can only reduce values on Shear Shift extends tension	reinf cap loads within 2D
Shear - Punching	Tested at 1.5D Orthogonal System Uses Conc Cap with Reinf Cap Rectangular Perimeter	Tested at 2.0D. Revised Radial System with Infill rad Uses 75% Conc with 75% Perimeter is circular at corr	dials as required Reinf based on 26.6 deg
Flat Slab Moments	Column Strip -75% & +55% Middle Strip -25% & +45% 67% of Supp At in 0.125 panel	•	to -80% & +50% to +70% to -40% & +30% to +50% l25 panel over support.
Shrinkage	Edge Restraint Method T1 Curing & T2 Seasonal Min T1 values Uses Ciria 91 Single Restraint R 0.5 Creep incl in Restraints	End, Edge Internal (End cr T1 Curing, T2 Seasonal, Ar No minimum T1 values Uses Ciria C660 R1, R2 and R3 Restraint Fa 0.65 creep factor separate	actors

EC2 DESIGN TOOL			
BASICS			Howes Atkinson Crowder LLP
HAC-PRO 1 - 5 - 2	BASICS	2	Copyright © 2009 HAC

The Design Of Liquid Retaining Structures To EC2

Basics

- The structures considered are of reinforced concrete and must hold or exclude water.
- Concrete has a tensile strength capacity of approximately 1 / 10 of its compressive strength.
- Concrete will normally crack in tension under Actions due to loading and or restrained shrinkage.
- Cracks must be of a small enough width so they will self heal.
- The categories of actions and combinations and partial safety factors are within EC0.
- Values of actions are specified within EC1.
- Element design is controlled by EC2 1 & EC2 3 & CIRIA C660.

Forces Actions Analysis

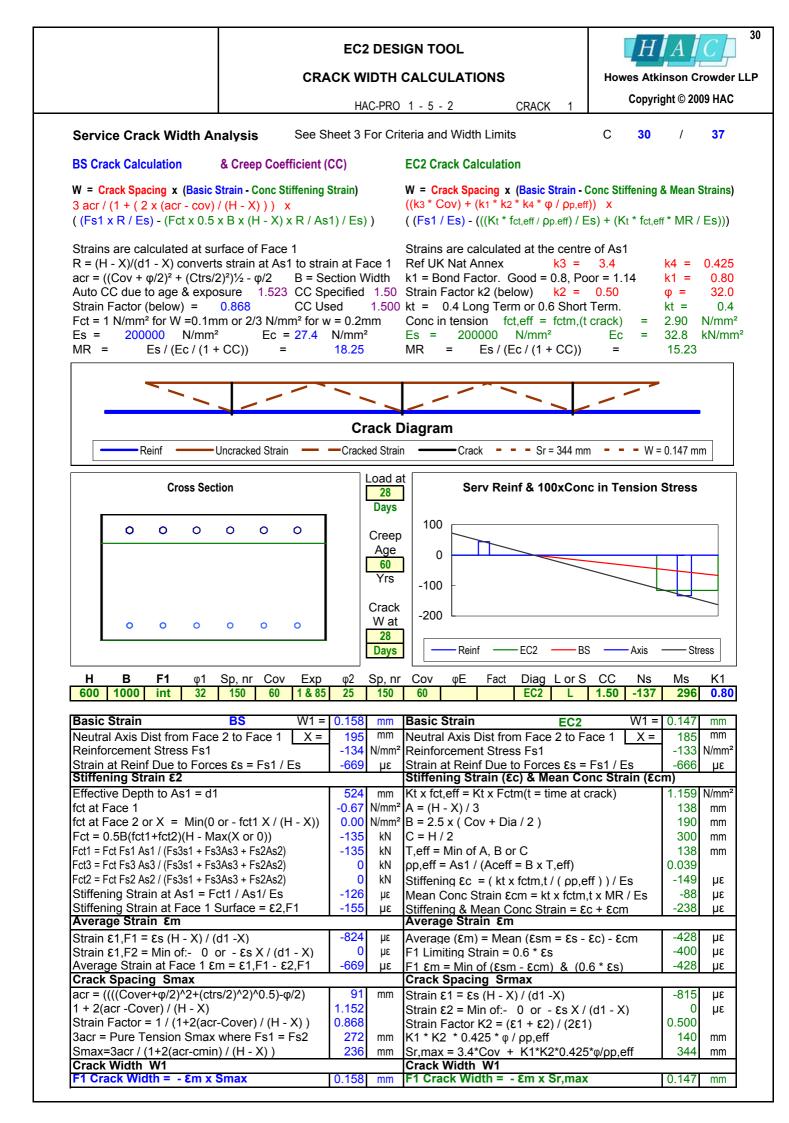
- Structures must be designed for any possible combination of internal or external load Actions.
- External loads cannot be used to assist in resisting internal loads and vice versa.
- Some simple structures can be analysed using charts and tables based on the theory of plates.
- Larger structures are best analaysed by computer using grillage or Finite Element techniques.
- The output results will include Shear or Punching Shear and combined Axial and Bending.

Shrinkage Actions Analysis

- Concrete shrinks due to curing and seasonal temperature drops, autogenous curing and drying.
- If the free shrinkage strain is restrained sufficiently the concrete will crack.
- Edge Restraint is along an edge of the element such as a slab restraining the base of a wall.
- End Restraint is where the element is restrained at the ends or along its length by piles or friction.
- Accurate assessment of End Restraint is complex and may require a computer analysis.
- The design rules are within EC2 3 with further guidance provided by CIRIA C660.

Autogenous Healing

- Cracks can self heal due to calcium hydroxide being conveted to calcium carbonate (limestone).
- Too much flow will flush through the deposits. Not enough flow will not create enough deposits.
- Cracks of 0.3mm can self heal within a few weeks but will leave an unsightly residue.
- Cracks of 0.2mm can self heal in days and will be noticeable but less so than the 0.3mm cracks.
- Cracks less than 0.1mm will self heal almost immediately and may not be noticed.


Reinforcement Requirements

- Reinforcement is required to resist ultimate forces in the same manner as normal structures.
- It must also limit crack widths due to crack inducing strain from loads or restrained shrinkage.
- Crack width = Crack Spacing x Crack Inducing Strain.
- The procedures for compliance are complex and the use of a spreadsheet and tables is worthwhile.

Relevant Eurocodes and UK National Annexes

BS EN 1990:2002 + A1:2005	Eurocode 0. (EC0) Basis of structural design UK National Annex to BS EN 1990:2002 + A1:2005
BS EN 1991-1-1:2002	Eurocode 1. (EC1 - 1) Actions on Structures Part 1-1: General actions - Densities, self-weight, imposed loads for buildings UK National Annex to BS EN 1991-1-1-2002
BS EN 1991-4:2006	Eurocode 1. (EC1 - 4) Actions on structures. Part 4: Silos and tanks UK National Annex to BS EN 1991-4-2006
BS EN 1991-5:2006	Eurocode 1. (EC1 - 5) Actions on structures. Part 5: Thermal Actions UK National Annex to BS EN 1991-5-2006
BS EN 1992-1-1:2004	Eurocode 2. (EC2 - 1) Design of concrete structures. Part 1 - 1: General rules and rules for buildings UK National Annex to BS EN 1992-1-1-2004
BS EN 1992-3-2006	Eurocode 2. (EC2 - 3) Design of concrete structures. Part 3: Liquid retaining and containing structures UK National Annex to BS EN 1992-3-2006
Non Contradictory Supporting	ng Document

CIRIA Report C660 Early-age thermal crack control in concrete - published 2007

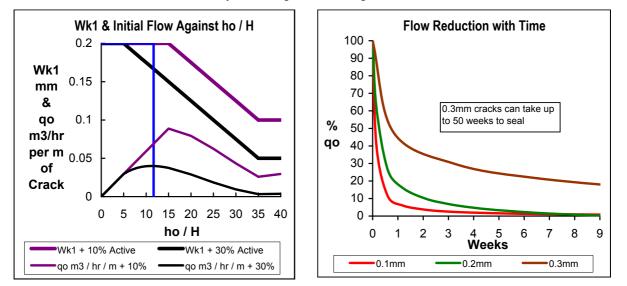
		EC2 DES	IGN T	OOL				H A	
	CR	ACK WIDTH	CALC	ULAT	IONS		Howes	Atkinson	Crowder
		HAC-PRO	1 - 5	- 2	CRAC	K 2	Co	opyright ©	2009 HAC
Calculation of Minim	um Face 1 Reinford	ement to Co	ntrol C	Cracki	ng				
Criteria			Guida	ince					
Reinf Stress os must <= os = Conc Strength at Concrete Strength will be Stronger Concrete requir Strength Age used for M Note. Min Restraint Age Edg End Reduction factor (k) if H Depth of Tension Zone F The effective area of con Stress Distribution Facto Stress Distribution Facto The Mean Concrete Axia Adjustment of fct,eff facto	racking x k _c k Act / As1 e greater for cracks at l res greater for cracks at l res greater % As1 at cr in % As1 (3D or 28D o ge is specified on MAIN ge = 3D I = 28D > 300mm (for Int Rest Factor (z), (See C660 T iccrete in the tensile zor r k _c For Shrinkage Res r k _c For Shrinkage Res r k _c For Forces al Stress (σ c = N / BH), or (k1 (h / h [*])) for Ten	l later age racking r LT) for:- J sheet r k = 1) Table 3.1) he (Act) straint (-ve in Tens)	Gener End R Force: Int Re Edge End R	estr s str Restr	Full crack pa later greater Cracks are f conc cap, a At First Crac At First Crac At First Crac At Latest Crac At Latest Crac k varies from z = 0.5 exce Act = Z B, v For Edge an $k_c = 0$ (High Value and if k1 (h / h [*]) =	strain in ormed ir new crac king king cking ack n 1.0 at H pt for Int where Z d End = Comp), in Tensi 2/3 (Ten	creases c dividually ck will form Normally Always at Calculate Calculate $1 \le 300$ to Restraint = k z H (1.0, For II 0.4 (N = 0 on or Com ns) or 1.5	rack widt . If later = n with a h at 28 Days but >= N but >= N 0.75 at H where z = 0.2H for nternal =), 1.0 (Hight npression 5 (h / h [*])	ths strain > higher σ s ys flin Age flin Age fl ≥ 800 = 0.2 or Int Res 0.5 gh Tens)
(h/h*) values if Axial F			0 Soctiv	2.2.2	h = H and h'		f H or 100)0mm	
Procedure Asmin $\sigma s = k_c k \sigma ct fct$,	Ref EC2 CI 7.3.2 a						fotm t / ful	k	
		$\sigma s = fyk$	=	-	sted Asmin% N/mm²		kc k fctm,t		min
fct,eff = fctm A Surface Zone Depth Fa	n at time t in days	-							
As is taken as Face 1 Re Equation is re-arranged t		I Act = Z x B, w As1min	/here Z =		H.For Interr n,t / fyk) x kc :			so Z = 0.:	2H
For fck = 30) N/mm²	fctm 3Day	=	1.733	N/mm²	fctm 28	BDay =	2.89	6 N/mm
pcrit % = 100	x fctm,t / fyk	3Day	=	0.347	%	28Day	=	0.57	9%
Section Depth Reduc	tion Factor k		BS Me	ethod u	ises a k value	appropr	iate to BS	8007 Zor	ne Depth
If H <= 300, k = 1 or If H	H >= 800, k = 0.75 els	e, k = 0.75 + ((0.25 x (800 -	H)/ 500)		For Intern	al Restra	aint, k = 1
•			DO 11		Jses 1.0 for S		and in N/		
Stress Distribution F	actor kc		BS Me	ethod L	565 1.0 101 3	hrinkage	and is in/		ces
	actor k ₀ nd Edge Restraint, k₀ =	1.0. For Inter				hrinkage			ces
Shrinkage For End ar Forces A Forces Z	nd Edge Restraint, kc = Zone Adjustment factor s Z / Shrinkage Z) = 1 g	(n) is introduce	nal Res ed to al ept for li	traint k low the nternal	ac = 0.5. e use of the Si Restraint whe	hrinkage	Z value ir	n all case	
ShrinkageFor End arForcesA Forces Zn = (Forces	nd Edge Restraint, kc = Zone Adjustment factor s Z / Shrinkage Z) = 1 le n kc = n x 0	(n) is introduce generally, exce	nal Res ed to al ept for li (2/3) (f	traint k low the nternal ct,eff)	ac = 0.5. e use of the Si Restraint whe	hrinkage ere n = 2	Z value ir	n all case es)	s
ShrinkageFor End arForcesA Forces Zn = (Forces)Axial Force is 0 or Tensil	nd Edge Restraint, kc = Zone Adjustment factor s Z / Shrinkage Z) = 1 le n kc = n x 0	r (n) is introduce generally, exce .4 x (1 - (σc / (nal Res ed to al ept for li (2/3) (f	traint k low the nternal ct,eff)	ac = 0.5. e use of the Si Restraint whe	hrinkage ere n = 2	Z value ir 2.5 k (forc	n all case es)	s
ShrinkageFor End arForcesA Forces Z n = (Forces)Axial Force is 0 or Tensil Axial Force is Compress	nd Edge Restraint, kc = Zone Adjustment factor s Z / Shrinkage Z) = 1 le n kc = n x 0	r (n) is introduce generally, exce .4 x (1 - (σc / (.4 x (1 - (σc / (nal Res ed to al ept for li (2/3) (f	traint k low the nternal ct,eff)	ac = 0.5. e use of the SI Restraint whe))) fct,eff))))	hrinkage ere n = 2	Z value ir 2.5 k (forc h = H & h	n all case es)	s 000 or H
ShrinkageFor End arForcesA Forces Z n = (Forces)Axial Force is 0 or Tensil Axial Force is CompressExampleH = 600 mm	nd Edge Restraint, kc = Zone Adjustment factor s Z / Shrinkage Z) = 1 le n kc = n x 0 ive n kc = n x 0	r (n) is introduce generally, exce .4 x (1 - (σc / (.4 x (1 - (σc / (nal Res ed to al pt for li (2/3) (f (1.5) (h	traint k low the nternal ct,eff) / h*) (ac = 0.5. e use of the SI Restraint whe))) fct,eff)))) kN	hrinkage ere n = 2	Z value ir 2.5 k (forc h = H & h BS	n all case es) * = Min 1	s 000 or H
ShrinkageFor End arForcesA Forces Z n = (Forces)Axial Force is 0 or Tensil Axial Force is CompressExampleH =600 mm	and Edge Restraint, $k_c = Cone Adjustment factors Z / Shrinkage Z) = 1le n k_c = n \times 0ive n k_c = n \times 0B = 1000 mm$	r (n) is introduce generally, exce .4 x (1 - (σc / (.4 x (1 - (σc / (nal Res ed to al pt for li (2/3) (f (1.5) (h N = k =	traint k low the nternal ct,eff) / h*) (-137	<pre>xc = 0.5. xc = 0.5. xc = use of the Si Restraint whe))) fct,eff))) kN z =</pre>	hrinkage ere n = ź	Z value ir 2.5 k (forc h = H & h BS	n all case es) * = Min 1 S or EC2 z z =	s 000 or H <u>EC2</u> 0.425
ShrinkageFor End arForcesA Forces Z n = (Forces)Axial Force is 0 or Tensil Axial Force is CompressExampleH =600 mmShrinkageRes	nd Edge Restraint, $k_c =$ Zone Adjustment factor s Z / Shrinkage Z) = 1 g le n $k_c = n \times 0$ ive n $k_c = n \times 0$ B = 1000 mm straint Edge fct,eff 1.73 N/mn	r (n) is introduce generally, exce .4 x (1 - (σc / (.4 x (1 - (σc / (nal Res ed to al pt for li (2/3) (f (1.5) (h N = k =	traint k low the nternal ct,eff) / h*) (-137 0.850 0.347	<pre>xc = 0.5. xc = 0.5. xc = use of the Si Restraint whe))) fct,eff))) kN z =</pre>	hrinkage ere n = 2 0.500 1.000	Z value ir 2.5 k (forc h = H & h BS k Z = k z	n all case es) * = Min 1 S or EC2 z z = H =	s 000 or H <u>EC2</u> 0.425 255
ShrinkageFor End arForcesA Forces Z $n = (Forces)$ Axial Force is 0 or Tensil Axial Force is CompressExampleH =600 mmShrinkageResAge3Days%As1min =kc x pcrit%	nd Edge Restraint, $k_c =$ Zone Adjustment factor s Z / Shrinkage Z) = 1 g le n $k_c = n \times 0$ ive n $k_c = n \times 0$ B = 1000 mm straint Edge fct,eff 1.73 N/mn	r (n) is introduce generally, exce .4 x (1 - (σc / (.4 x (1 - (σc / (α α α α α α α α α α α α α α α α α α α	nal Res ed to al pt for li (2/3) (f (1.5) (h N = k = 6	traint k low the nternal ct,eff) / h*) (-137 0.850 0.347	ac = 0.5. e use of the Si Restraint whe)))) fct,eff)))) kN z = kc = As1 req = 9	hrinkage ere n = 2 0.500 1.000	Z value ir 2.5 k (forc h = H & h BS k Z = k z n x BZ / 10	n all case es) * = Min 1 S or EC2 z z = H =	s 000 or H <u>EC2</u> 0.425 255
ShrinkageFor End arForcesA Forces Z $n = (Forces)$ Axial Force is 0 or Tensil Axial Force is CompressExampleH =600 mmShrinkageResAge3Days%As1min =kc x pcrit%	and Edge Restraint, $k_c =$ Zone Adjustment factor s Z / Shrinkage Z) = 1 g $le n k_c = n x 0$ $ive n k_c = n x 0$ B = 1000 mm straint Edge fct,eff 1.73 N/mn = 1.000 x	r (n) is introduce generally, exce .4 x (1 - (σc / (.4 x (1 - (σc / (α x (1 - (σc / (α α α α α α α α α α α α α α α α α α α	nal Res ed to al pt for li (2/3) (f (1.5) (h N = k = 6 0.347 k =	traint k low the nternal ct,eff) / h*) (-137 0.850 0.347 %	ac = 0.5. e use of the Si Restraint whe)))) fct,eff)))) kN z = kc = As1 req = 9 z =	hrinkage ere n = 2 0.500 1.000 %As1mir	Z value ir 2.5 k (forc h = H & h BS k Z = k z n x BZ / 10	n all case es) * = Min 1 S or EC2 : z = H = 00 =	s 000 or H <u>EC2</u> 0.425 255 884

	EC2 DESIGN TOOL CRACK WIDTH CALCULA HAC-PRO 1 - 5 - 2	CULATIONS Howes Atkinson Crow	32 Howes Atkinson Crowder LLP Copyright © 2009 HAC
EC2 Maximum Leal		- 3 - 2006 Clause 7.3	

0	Some degree of leakage acceptable or not relevant.	Adopt the provisions of 7.3.1 of EN 1992 - 1 - 1 Note that widths are affected by exposure class.
1	Limited to a small amount. Some surface staining or damp patches acceptable.	Full thickness cracks must be <= wk1 or If X >= 50mm or 0.2H based on a quasi permanent combination of actions and strain range is < 150 $\mu\epsilon$ Adopt the provisions of 7.3.1 of EN 1992 - 1 - 1
2	Minimal Appearance not to be impaired by staining.	Avoid full thickness cracks by ensuring X >= 50mm or 0.2H based on a quasi permanent combination of actions and strain range is < 150 $\mu\epsilon$ Any partial depth cracks must be <= wk1
3	None at all.	Use Liners or Pre-stress or Post-tension

Class 1 is the minimum class for Liquid Retaining Structures. This is considered to be appropriate for a utility structure and is closest to BS8007 0.2mm criteria.

Class 2 can exceed the BS8007 0.1mm crack width limit and will result in a significant increase in reinforcement over Class 1 and will be impossible to achieve in respect of full depth thermal or direct tension cracks.


Provisions of 7.3.1 of EN 1992 - 1 - 1

Exposure Class	Quasi Permanent Load Combination Wmax mm
X0, XC1	0.4
XC2, XD2, XS1, XS2, XS3	0.3

Water at a consistent level for most of the time with SW is considered to be a quasi permanent combination. Therefore in certain circumstances a 0.3mm crack width would be permissible in a non full thickness crack.

Wk1	Active ∆Wk	1 % = 30) or 20 or 1	0 10	%	ho / H Limit	of Wk1 = 0.2r	nm 15
lf ho / H <	15 35	wk1 = wk1 =	0.2 mm 0.1 mm	Otherwise	Wk1 =	= 0.1 + 0.1 * (3	35 - (ho / H)) /	20 mm
ho 7	000 mm	H C	600 mm		ho/H	11.67	Wk1 =	0.200 mm
qo = 0.740	(ho / H) Wk 4	^3 m³/h	r / m at 20	° % qt/	qo = 65	5 (Wk^-1.05)(t	t^(-1.3+4Wk))	- (10^5)(Wk^5.8)

Ref Edvardsen Water Permeability and Autogenous Healing of Cracks in Concrete ACI Materials Journal 1999

EC2 DESIGN TOOL

Howes Atkinson Crowder LLP

33

CRACK WIDTH CALCULATIONS HAC-PRO 1 - 5 - 2

Copyright © 2009 HAC

Comparison between BS8007 & EC2 Crack Width Calculations

F1 = Face 1 (Tens)

CRACK

4

F2 = Face 2 (Comp)

BS Crack Calculation	Case	1	2	3	4	5	6	7	8	9	10	11	12
F1 Conc in Tension Stiffening Stress N/mm ²		-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667
F2 Conc in Tension Stiffening Stress N/mm ²		-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667
Conc in Tension Stiffening Force kN		-135	-149	-149	-200	-67	-139	-149	-147	-160	-146	-54	-33
F1 Neutral Axis X, from Face 2 towards Face 1 mm		195	152	152	-154939	98	183	152	159	120	162	178	137
F1 Reinforcement Stress N/mm ²		-134	-102	-98	-112	-170	-46	-126	-67	-118	-1	-300	-281
F1 Strain at Surface Due to Forces C1 µStrain		-824	-587	-566	-561	-1267	-269	-726	-407	-661	-6	-2003	-2330
F1 Conc in Tension Stiffening Strain C2 µStrain		-155	-412	-412	-209	-238	-250	-412	-166	-426	-611	-113	-129
F1 Average Strain Cm = C1- C2 µStrain	Em1	-669	-175	-154	-351	-1028	-19	-315	-241	-234	605	-1890	-2201
F1 3acr=3*((((cover+φ/2)^2+(ctrs/2)^2)^0.5)-φ/2) mm		272	258	258	245	270	255	258	272	240	243	261	267
F1 Strain Dist Factor = 1 / (1+2(acr-cmin)/(H-X))		0.868	0.861	0.861	0.999	0.748	0.856	0.861	0.877	0.857	0.842	0.796	0.687
F1 Crack Spacing Srmax=3acr/(1+2(acr-cmin)/(H-X))mm	Sr1	236	222	222	244	202	219	222	239	206	205	208	184
F1 Crack Width = $- \text{ Cm1 x Sr1 mm}$	W1	0.158	0.038	0.034	0.085	0.207	0.004	0.069	0.057	0.048	0.000	0.392	0.404
F2 Neutral Axis X, from Face 1 towards Face 2 mm		405	448	448	155239	202	417	448	441	480	438	272	163
F2 Reinforcement Stress N/mm ²		50	24	23	-112	46	16	30	16	19		170	209
F2 Strain at Surface Due to Forces C1 µStrain		0	24	20	-560	0	0	0	0	10	0	1/0	200
F2 Conc in Tension Stiffening Strain C2 µStrain		0	0	0	-209	0	0	0	0	0	0	0	
	C 2	0	0	-		0	0	0		0	0	0	
F2 Average Strain Cm = $C1 - C2 \mu$ Strain	Em2	075	050	0	-351	074	0	050	0	040	042	007	007
F2 3acr=3*((((cover+ $\phi/2$)^2+(ctrs/2)^2)^0.5)- $\phi/2$) mm		275	258	258	244	274	258	258	278	240	243	267	267
F2 Strain Dist Factor = 1 / (1+2(acr-cmin)/(H-X))		0.754	0.678	0.678	0.999	0.582	0.718	0.678	0.710	0.600	0.664	0.705	0.649
F2 Crack Spacing Srmax=3acr/(1+2(acr-cmin)/(H-X))mm	Sr2	208	175	175	244	160	185	175	197	144	162	189	174
F2 Crack Width = - Cm2 x Sr2 mm	W2	0.000	0.000	0.000	0.085	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
EC2 Crack Calculation		405	140	4.40	454000	00	470	140	450	440	450	400	400
F1 Neutral Axis X, from Face 2 towards Face 1 mm		185	143	143		93	173	143	150	113		169	133
F1 Reinforcement Stress N/mm ²		-133	-101	-97	-112	-168	-45	-125	-67	-118		-298	-272
F1 Strain Distribution Factor K2		0.500	0.500	0.500	0.999	0.500	0.500		0.500	0.500		0.500	0.500
F1 Kt x Concrete Tensile Stress fcteff = 0.4 x Fctm N/mm ²		-1.159	-1.159	-1.159	-1.159	-1.159	-1.159		-1.159	-1.159		-1.159	-1.159
F1 Concrete Tensile Stress Width mm		138	150.0	150	119	69	142	150	150	125		94	56
F1 Aceff = width of section x tensile stress width mm ²		138315	150000	150000	119211	69080	142440		150112	125000		56256	33351
F1 3.4 * Cover mm		204	170	170	136	190	170	170	204	136	136	177	177
F1 Ppeff = As1 / Aceff		0.039	0.014	0.014	0.020	0.030	0.024	0.014	0.036	0.017	0.011	0.057	0.074
F1 φ Equiv - Where alt bars of Diff Dia Ref Equ 7.11		32.0	20.0	20.0	15.2	20.0	25.0	20.0	32.0	20.0	16.0	32.0	25.0
F1 K1 = Bond factor. Good = 0.8, Poor = 1.14		0.80	1.14	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80
F1 K1 * K2 * 0.425 * Dia / Ppeff mm		140	347	243	258	112	180	242	152	203	244	95	58
F1 Sr max = 3.4*Cov + K1*K2*0.425*Dia/Ppeff mm	Sr1	344	517	413	394	303	350	412	356	339		272	235
F1 Applied Forces Reinforcement Strain Es µStrain		-666	-505	-487	-561	-842	-227	-626	-336	-590		-1491	-1362
F1 Concrete in Tension Stifffening Strain & UStrain		-149	-415	-415	-289	-191	-252	-415	-162	-346		-101	-79
F1 Mean Strain Between Cracks ccm =fcteffxMR/Es µStra	lin	-88	-88	-88	-88	-88	-88	-88	-88	-88		-88	-88
F1 Average Microstrain = ($\epsilon sm = \epsilon s - \epsilon c$) - $\epsilon cm \mu Strain$	l	-428	-2	16	-183	-563	113	-123	-85	-156		-1301	-1196
		-400	-303	-292	-336	-505	-136		-201	-354		-894	-817
F1 Limiting Strain = $0.6 \times \text{s}$ µStrain	٤m1	-400 -428	-303	-292	-336	-563	-136		-201	-354		-1301	-1196
F1 ϵ m1 = Min of (ϵ sm - ϵ cm) & (0.6 * ϵ s) = Max µstrain	W1	0.147	0.157	0.121	0.132	0.170	0.048			0.120		0.354	0.280
F1 Crack Width = - Em1 x Sr1 mm	VV I		457	457	155239		427	457	450	487		281	167
F2 Neutral Axis X, from Face 1 towards Face 2 mm		415				207					448		
F2 Reinforcement Stress N/mm ²		44	21	20	-112	37	14		14	17	-	149	183
F2 Strain Distribution Factor K2		0.000	0.000	0.000			0.000					0.000	0.000
F2 Kt x Concrete Tensile Stress fcteff = 0.4 x Fctm N/mm	<i>'</i>	0.000	0.000	0.000		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
F2 Concrete Tensile Stress Width mm		0	0	0	119	0	0	0	0	0	0	0	C
F2 Aceff2 = width of section x Stress Width mm ²		0	0	0	119211	0	0	0	0	0	0	0	(
F2 3.4 * Cover mm		0	0	0	136	0	0	0	0	0	0	0	0
F2 Ppeff2 = As2 / Aceff2	1	0.001	0.001	0.001	0.020	0.001	0.001			0.001		0.001	0.001
F2 φ Equiv - Where alt bars of Diff Dia Ref Equ 7.11	1	25.0	20.0	20.0	15.2	12.0	20.0	20.0	20.0	20.0	16.0	20.0	25.0
F2 K1 * K2 * 0.425 * Dia / Ppeff2 mm		0	0	0	258	0	0	0	0	0	0	0	(
F2 Sr max = 3.4*Cov + 0.8*K2*0.425*Dia/Ppeff2 mm	Sr2	0	0	0	394	0	0	0	0	0	0	0	0
F2 Applied Forces Reinforcement Strain Es uStrain	1	0	0	0	-560	0	0	0	0	0	0	0	(
F2 Concrete in Tension Stifffening Strain & UStrain		0	0	0	-289	0	0	0	0	0	0	0	(
F2 Mean Strain Between Cracks \mathcal{E} cm = fcteff x MR / Es μ S	train	0	Ő	0	-88	0	0	Ő	0	0	0	Ő	(
F2 Average Microstrain = (ϵ sm = ϵ s - ϵ c) - ϵ cm μ Strain		0	ů 0	0	-182	ů 0	0	0	ů 0	0	0 0	0	
F2 Limiting Strain = $0.6 \times \epsilon_s$ µStrain	1	0	0	0	-336	0	0	0	0	0	0	0	
	٤m2	n	n n	Ő	-336	n	n	Ő	n	n n	n	ő	
IE2 cm2 - Min of (com com) 2 (0 6 * co) - Mov underside				U U	-000	J	J	v	J	J	U	J	, ,
F2 εm2 = Min of (εsm - εcm) & (0.6 * εs) = Max μstrain F2 Crack Width = - εm2 x Sr2 mm	W2	0.000	0.000	0.000	0.132	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000

EC2 DESIGN TOOL

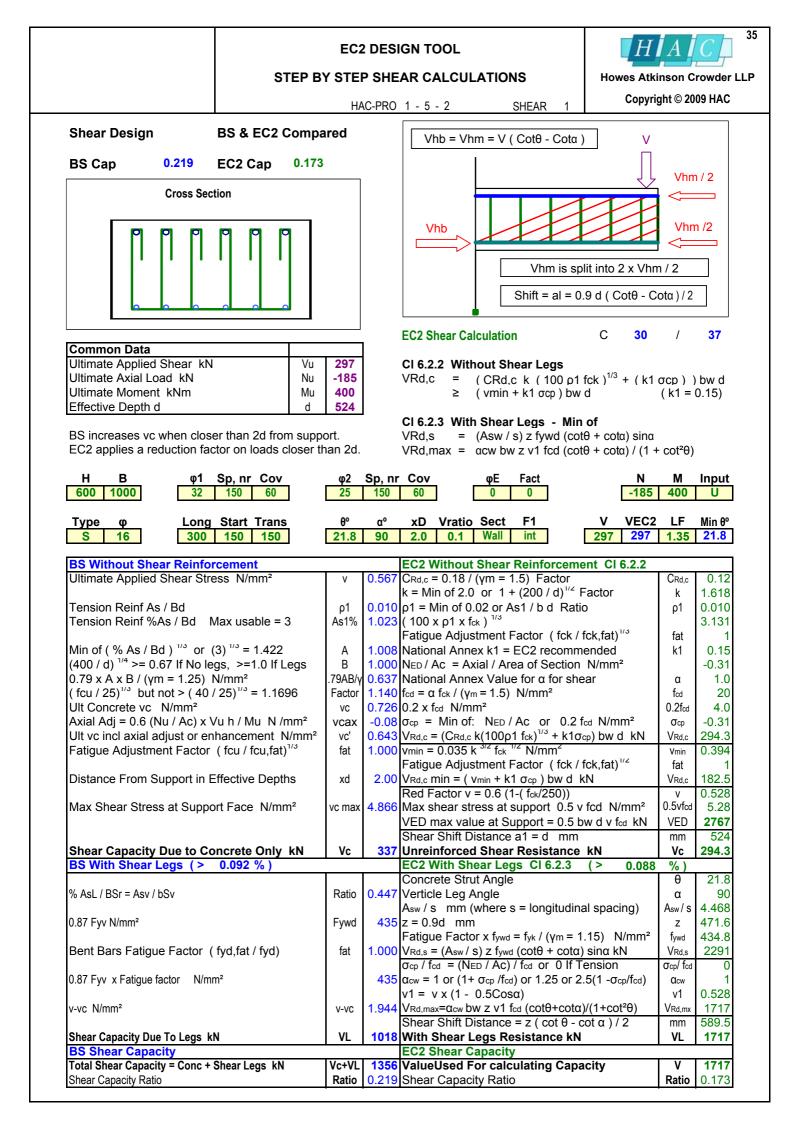
Howes Atkinson Crowder LLP

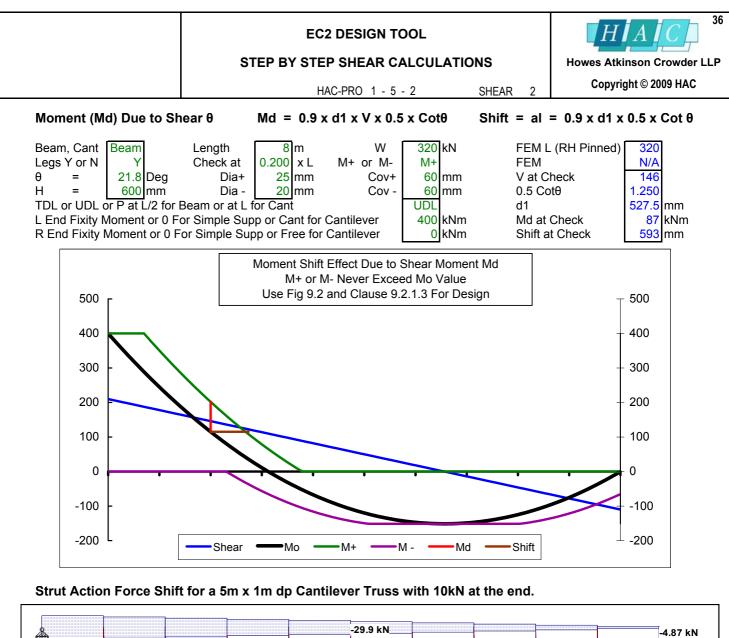
CRACK WIDTH CALCULATIONS HAC-PRO 1 - 5 - 2

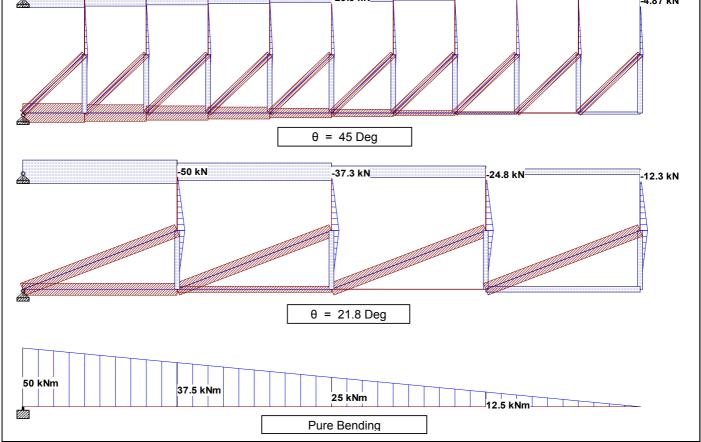
Copyright © 2009 HAC

Comparison between BS8007 & EC2 Crack Width Calculations

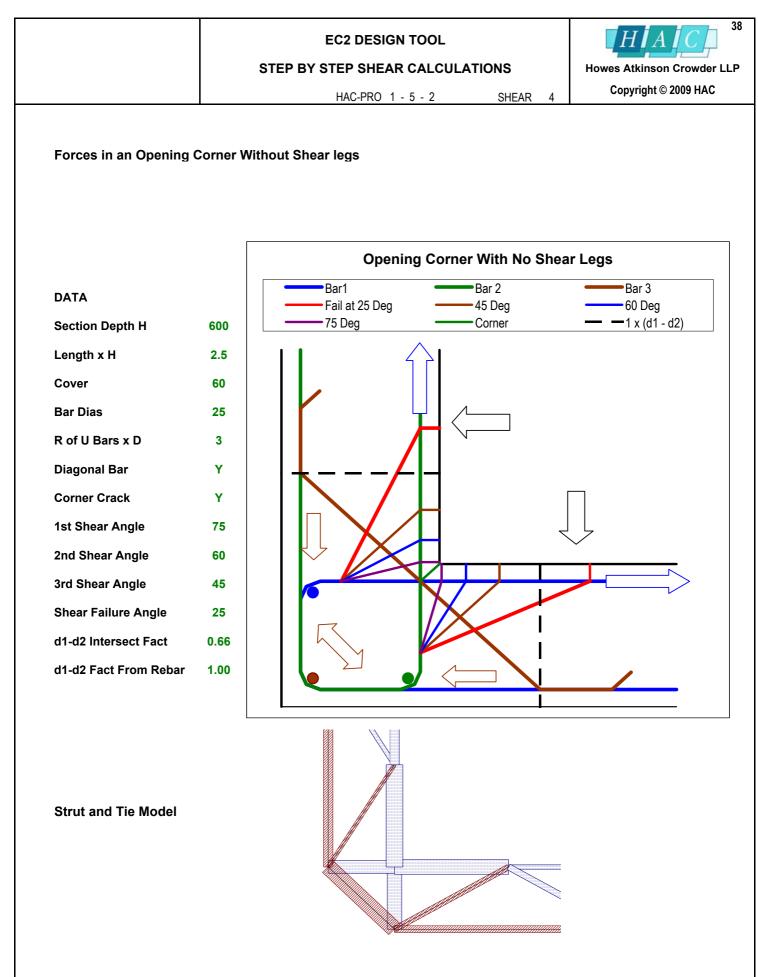
F1 = Face 1 (Tens)


CRACK


5


F2 = Face 2 (Comp)

BS Crack Calculation F1 Conc in Tension Stiffening Stress N/mm ²	Case	13 -0.667	14 -0.667	15 -0.667	16 -0.667	17 -0.667	18 -0.667	19 -0.667	20 -0.667	21 -0.667	22 -0.667	23 -0.667	24
F2 Conc in Tension Stiffening Stress N/mm ²		-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.667	-0.66
Conc in Tension Stiffening Force kN		-0.007	-0.007 -64	-0.007 -49	-0.007	-0.007 -46	-0.007 -46	-0.007 -44	-0.007 -6	-0.007 -6	-0.007	-0.007	-0.00
F1 Neutral Axis X, from Face 2 towards Face 1 mm		194	129	206	5893	270	327	335	245	236	170	170	-61
F1 Reinforcement Stress N/mm ²		-110	-309	-194	112	-221	-229	-203	243	-12	-1	-1	-4
F1 Strain at Surface Due to Forces C1 µStrain		-653	-1914	-1378	0	-1571	-1523	-1365	-360	-454	-7	-7	-26
F1 Conc in Tension Stiffening Strain 62 µStrain		-205	-317	-69	0	-135	-126	-123	000	-155	-527	-527	-15
F1 Average Strain $\mathcal{E}m = \mathcal{E}1 - \mathcal{E}2 \ \mu$ Strain	Em1	-449	-1597	-1309	Ő	-1435	-1397	-1242	-360	-300	520	520	-10
F1 3acr=3*((((cover+ $\phi/2)^2$ +(ctrs/2)^2)^0.5)- $\phi/2$) mm		231	272	254	365	355	293	293	280	280	679	679	23
F1 Strain Dist Factor = $1 / (1+2(acr-cmin)/(H-X))$		0.890	0.806	0.789	0.977	0.633	0.750	0.744	0.342	0.376	0.564	0.564	0.92
F1 Crack Spacing Srmax=3acr/(1+2(acr-cmin)/(H-X))mm	Sr1	206	219	200	357	225	219	218	96	105	383	383	21
F1 Crack Width = $-$ Cm1 x Sr1 mm	W1	0.092	0.350	0.262	0.000	0.323	0.306	0.270	0.034	0.031	0.000	0.000	0.02
F2 Neutral Axis X, from Face 1 towards Face 2 mm		406	321	244	-5443	230	273	265	55	64	430	430	910
F2 Reinforcement Stress N/mm ²		42	82	162	118	277	289	276	245	254	0	0	-3
F2 Strain at Surface Due to Forces C1 µStrain		0	0	0	0	0	0	0	0	0	0	0	-17
F2 Conc in Tension Stiffening Strain C2 µStrain		0	0	0	0	Ō	0	0	0	0	0	0	-10
F2 Average Strain Cm = C1- C2 µStrain	Em2	0	0	0	0	0	0	0	0	0	0	0	-73
F2 3acr=3*((((cover+φ/2)^2+(ctrs/2)^2)^0.5)-φ/2) mm		233	274	264	365	355	293	293	280	280	679	679	23
F2 Strain Dist Factor = 1 / (1+2(acr-cmin)/(H-X))		0.790	0.620	0.740	0.977	0.670	0.782	0.786	0.696	0.688	0.339	0.339	0.92
F2 Crack Spacing Srmax=3acr/(1+2(acr-cmin)/(H-X))mm	Sr2	184	170	196	357	238	229	230	195	193	230	230	21
F2 Crack Width = - Em2 x Sr2 mm	W2	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.01
EC2 Crack Calculation													
F1 Neutral Axis X, from Face 2 towards Face 1 mm		183	121	196	5849	263	317	326	243	233	160	160	-61
F1 Reinforcement Stress N/mm ²		-109	-307	-193	93	-214	-223	-197	-2	-13	-1	-1	-49
F1 Strain Distribution Factor K2		0.500	0.500	0.500	0.000	0.500	0.500	0.500	0.500	0.500	0.500	0.500	
F1 Kt x Concrete Tensile Stress fcteff = 0.4 x Fctm N/mm ²		-1.159	-1.159	-1.159	0.000		-1.159		-1.159	-1.159	-1.159	-1.159	
F1 Concrete Tensile Stress Width mm		139	110	85	0	79	94	91	19	22	147	147	13
F1 Aceff = width of section x tensile stress width mm ²		138992	65764	50791	0	47445	47133	45690	5747	6661	87973	87973	13125
F1 3.4 * Cover mm		177	177	177	0	177	177	177	136	136	204	204	136
F1 Ppeff = As1 / Aceff		0.028	0.019	0.099	0.001	0.068	0.068		0.280	0.241	0.011	0.011	0.02
F1 φ Equiv - Where alt bars of Diff Dia Ref Equ 7.11		25.0	20.0	40.0	16.0	32.0	32.0	32.0	32.0	32.0	25.0	25.0	25.0
F1 K1 = Bond factor. Good = 0.8 , Poor = 1.14		1.14	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.80	1.14	0.80	0.80
F1 K1 * K2 * 0.425 * Dia / Ppeff mm		214	178	69	0	80	80	75	19	23	543	372	28
F1 Sr max = 3.4*Cov + K1*K2*0.425*Dia/Ppeff mm	Sr1	391	355	246	0	257	257	251	155	159	747	576	42 ⁻
F1 Applied Forces Reinforcement Strain Es µStrain		-546	-1533	-964	0	-1071	-1114	-986	-9	-67	-6	-6	-240
F1 Concrete in Tension Stifffening Strain Ec µStrain		-205	-303	-59	0	-85	-85	-82	-21	-24	-519	-519	-23
F1 Mean Strain Between Cracks εcm =fcteffxMR/Es μStra	n	-88	-88	-88	0 0	-88	-88	-88	-88	-88	-88	-88	-88
F1 Average Microstrain = (ɛsm = ɛs - ɛc) - ɛcm µStrain		-253 -328	-1141 -920	-817 -578	0	-898 -643	-941 -668	-816 -592	100 -5	45 -40	601 -3	601 -3	74 148-
F1 Limiting Strain = 0.6 * εs μStrain	٤m1	-320 -328	-920 -1141	-576 -817		-043 -898	-000 -941	-592 -816	-5 -5	-40 -40	-3 -3	-3 -3	
F1 ϵ m1 = Min of (ϵ sm - ϵ cm) & (0.6 * ϵ s) = Max µstrain	W1	0.128	0.405	0.201	0.000	0.231	0.241	0.207	0.001	0.006	0.003	0.002	0.06
F1 Crack Width = - εm1 x Sr1 mm F2 Neutral Axis X, from Face 1 towards Face 2 mm	VVI	417	329	254	-5399	237	283	274	0.001 57	67	440	440	0.00 / 91
F2 Reinforcement Stress N/mm ²		38	70	142	-5555	247	203		218	226	440	440	-38
F2 Strain Distribution Factor K2		0.000	0.000	0.000	0.000						0.000	0.000	
F2 Kt x Concrete Tensile Stress fcteff = 0.4 x Fctm N/mm ²		0.000	0.000	0.000	0.000	0.000			0.000	0.000	0.000	0.000	
F2 Concrete Tensile Stress Width mm		0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	13
F2 Aceff2 = width of section x Stress Width mm ²		0	0	0	0	0	0	0	0	0	0	0	13125
F2 3.4 * Cover mm		0	0	0	0	0	0	0	0	0	0	0	130
F2 Ppeff2 = As2 / Aceff2		0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.02
F2 ϕ Equiv - Where alt bars of Diff Dia Ref Equ 7.11		20.0	16.0	20.0	16.0	32.0	32.0		32.0	32.0	25.0	25.0	
F2 0.8 * K2 * 0.425 * Dia / Ppeff2 mm		0	0	0	0	0	0	00	0	0	0	0	28
F2 Sr max = 3.4*Cov + 0.8*K2*0.425*Dia/Ppeff2 mm	Sr2	0	0	0	0	0	0	0	0	0	0	0	42
F2 Applied Forces Reinforcement Strain £s µStrain		0	0	0	0	0	0	0	0	0	0	0	-19
F2 Concrete in Tension Stifffening Strain & µStrain		Ő	Ō	0	0	Ő	0	Ő	Ō	0	Ő	0	-23
F2 Mean Strain Between Cracks \mathcal{E} cm = fcteff x MR / Es μ Si	rain	0	0	0	0	0	0	0	0	0	0	0	-8
F2 Average Microstrain = (ϵ sm = ϵ s - ϵ c) - ϵ cm μ Strain		0	0	0	0	0	0	0	0	0	0	0	13
		0	0	0	0	0	0	0	0	0	0	0	-11
IFZ Limiting Strain = 0.6 " is ustrain			-					1 1		1		1	
F2 Limiting Strain = $0.6 * \varepsilon_{\text{S}} \mu$ Strain F2 ε_{m2} = Min of ($\varepsilon_{\text{Sm}} - \varepsilon_{\text{Cm}}$) & ($0.6 * \varepsilon_{\text{S}}$) = Max μ strain	٤m2	0	0	0	0	0	0	0	0	0	0	0	-11


34

Shear Design Code EC2 Conc Shear kN Dia1 V 600 Leg Concrete K ρ1 vrdc Shear Force Shift Vrdc Legs Transv Leg Ctrs Max Transv Ctrs Shear Force Shift Vrds	GENERAL SHEAR HAC-PRO 1 - 5 - 2 SHEAR 3 30 / 37 H 600 bw 1000 fyk 500 θ 21.8 g 25 Ctrs or Nr < 50 150 Cov 1 60 As1 3272 S < St St 12 Ctrs or Nr < 50 300 S 300 Asw 377 % = = = Min of 1 + (200 / d1) ^ 0.5 or 2.0 = Min of As1 / bw d1 or 0.02 = Max of 0.035 K^1.5 fck^0.5 or 0.12 x K x (100 x p1 x fck)^(1/3) = d1 = (Min of (0.5 (0.6 (1 - fck / 250)) fck / 1.5) or vrdc) x bw x d1 / 1000 100 100	d1 smax = 0 0.126 M = = (=		009 HA
Code EC2 Conc Shear kN Dia1 V 600 Leg Concrete K ρ1 vrdc Shear Force Shift Vrdc Legs Transv Leg Ctrs Max Transv Ctrs Shear Force Shift	1 30 / 37 H 600 bw 1000 fyk 500 0 21.8 d 25 Ctrs or Nr (<50) 150 Cov 1 60 As1 3272 S < Si 12 Ctrs or Nr (<50) 300 S 300 Asw 377 % = = Min of 1 + (200 / d1)^0.5 or 2.0 = Min of As1 / bw d1 or 0.02 = Max of 0.035 K^1.5 fck^0.5 or 0.12 x K x (100 x p1 x fck)^(1/3) = d1 = (Min of (0.5 (0.6 (1 - fck / 250)) fck / 1.5) or vrdc) x bw x d1 / 1000	d1 smax = 0 0.126 M = = (=	528 fywd 0.75d1 = Min % = 0	434.8 390 0.088
Code EC2 Conc Shear kN Dia1 V 600 Leg Concrete K ρ1 vrdc Shear Force Shift Vrdc Legs Transv Leg Ctrs Max Transv Ctrs Shear Force Shift	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6max = 0 0.126 M = = = (0.75d1 = Min % = 0	39
Code EC2 Conc Shear kN Dia1 V 600 Leg Concrete K ρ1 vrdc Shear Force Shift Vrdc Legs Transv Leg Ctrs Max Transv Ctrs Shear Force Shift	25 Ctrs or Nr (<50) 150 Cov 1 60 As1 3272 S < Si 12 Ctrs or Nr (<50) 300 S 300 Asw 377 % = = Min of 1 + (200 / d1)^0.5 or 2.0 = Min of As1 / bw d1 or 0.02 = Max of 0.035 K^1.5 fck^0.5 or 0.12 x K x (100 x p1 x fck)^(1/3) = d1 = (Min of (0.5 (0.6 (1 - fck / 250)) fck / 1.5) or vrdc) x bw x d1 / 1000	6max = 0 0.126 M = = = (0.75d1 = Min % = 0	39
V 600 Leg Concrete Κ ρ1 vrdc Shear Force Shift Vrdc Legs Transv Leg Ctrs Max Transv Ctrs Shear Force Shift	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.126 M = = (=	Min % = 0	
Concrete Κ ρ1 vrdc Shear Force Shift Vrdc Legs Transv Leg Ctrs Max Transv Ctrs Shear Force Shift	= Min of $1 + (200/d1)^{0.5}$ or 2.0 = Min of As1/bw d1 or 0.02 = Max of 0.035 K^1.5 fck^0.5 or 0.12 x K x (100 x p1 x fck)^(1/3) = d1 = (Min of (0.5 (0.6 (1 - fck / 250)) fck / 1.5) or vrdc) x bw x d1 / 1000	= = (=	0	0.08
ρ1 vrdc Shear Force Shift Vrdc Legs Transv Leg Ctrs Max Transv Ctrs Shear Force Shift	 Min of As1 / bw d1 or 0.02 Max of 0.035 K^1.5 fck^0.5 or 0.12 x K x (100 x p1 x fck)^(1/3) d1 (Min of (0.5 (0.6 (1 - fck / 250)) fck / 1.5) or vrdc) x bw x d1 / 1000 	= (0.00
vrdc Shear Force Shift Vrdc Legs Transv Leg Ctrs Max Transv Ctrs Shear Force Shift	 Max of 0.035 K^1.5 fck^0.5 or 0.12 x K x (100 x p1 x fck)^(1/3) d1 (Min of (0.5 (0.6 (1 - fck / 250)) fck / 1.5) or vrdc) x bw x d1 / 1000 	=	0.000	
Shear Force Shift Vrdc Legs Transv Leg Ctrs Max Transv Ctrs Shear Force Shift	= d1 = (Min of (0.5 (0.6 (1 - fck / 250)) fck / 1.5) or vrdc) x bw x d1 / 1000			•
Vrdc Legs Transv Leg Ctrs Max Transv Ctrs Shear Force Shift	= (Min of (0.5 (0.6 (1 - fck / 250)) fck / 1.5) or vrdc) x bw x d1 / 1000		0 N/mm ²	2
Legs Transv Leg Ctrs Max Transv Ctrs Shear Force Shift		=	0 mm	
Transv Leg Ctrs Max Transv Ctrs Shear Force Shift	= Asw/S		0 kN 1.257 mm	
Max Transv Ctrs Shear Force Shift	= Asw / S = Ctrs or (bw / nr)	=	300 mm	
Shear Force Shift	= Min of 0.75d1 or 600mm	=	396 mm	
	$= 0.9 \text{ d1} \times 0.5 \times \text{Cot} \theta$	=	593 mm	
VIOS	= $(Asw / S) \times 0.9 d1 \times fywd \times Cot \theta / 1000$	= (648.5 kN	ОК
Vrd,max	$= (bw 0.9 d1 (0.6 (1 - (fck / 250)) fck / 1.5) / (Cot\theta + Tan\theta))$		1729 kN	OK
·				
Shear Design	2 20 / 27 / 27 / 200 huy 4000 filt 500 0 / 45	-14	500 ()	40.1
Code BS Conc	30 / 37 H 600 bw 1000 fyk 500 θ 45 35 Ctro or Nr ($<$ 50) 150 Cov 1 60 Ap1 2272 S $<$ S		528 fywd	434.
Shear kN Dia1 V 600 Leg	25 Ctrs or Nr (< 50)			39 0.08
Concrete A	<u>12 Ctrs or Nr (<50)</u> <u>300 S</u> <u>300 Asw</u> <u>377 % =</u> = (400 / d) ^ 1/4 >= 0.67 If No legs, >=1.0 If Legs	0.126 M	<u>viin % =</u> 1	U.U8
B	$= (4007 \text{ d})^{-1} 1/4 \ge 0.07 \text{ line legs}, \ge 1.0 \text{ line legs}$ $= \text{Min of (100 As1 / bw d1)^ 1/3 or 1.422}$		0.853	
D VC	= $(Min fcu or 40 / 25)^{-1/3} \times 0.79 \times A \times B / 1.25$		0.655 0.614 N/mm ³	2
Shear Force Shift	= N/A	=	N/A mm	
	 M/A (Min of (0.8 (fcu¹/2) or 5 or vc) x bw x d1 / 1000 	=	324 kN	
Legs	= Asw / bw S Min = 0.0009		0.001	
Transv Leg Ctrs	= Ctrs or (bw / nr)	=	300 mm	
Max Transv Ctrs	= Min of 0.75d1 or 600mm	=	396 mm	
Shear Force Shift	= N/A	=	N/A mm	
Vrds	= (Asw / bw S) x fywd x bw x S and Add to Vc	= ;	288.2 kN	
Total	= Total BS Capacity		612.2 kN	OK
Shear Design	3			
Code BS Conc	30 / 37 H 600 bw 1000 fyk 500 θ 21.8 θ	d1	528 fywd	434.
Shear kN Dia1	25 Ctrs or Nr (< 50) 6 Cov 1 60 Ås1 2945 S < Si			39
V 600 Leg	0 Ctrs or Nr (< 50) 0 S 0 Asw 0 % =		Min % =	0.00
Concrete A	= (400 / d) ^ 1/4 >= 0.67 If No legs, >=1.0 If Legs	= (0.933	
В	= Min of (100 As1 / bw d1) ^ 1/3 or 1.422	= (0.823	
VC	= (Min fcu or 40 / 25) ^ 1/3 x 0.79 x A x B / 1.25	= (0.553 N/mm ³	2
Shear Force Shift	= N/A	=	N/A mm	
Vc	= (Min of (0.8 (fcu [^] 1/2) or 5 or vc) x bw x d1 / 1000		291.9 kN	
Legs	$= Asw / bw S \qquad Min = 0.0009$		0.000	
Transv Leg Ctrs	= $Ctrs \text{ or } (bw/nr)$	=	0 mm	
Max Transv Ctrs	= Min of 0.75d1 or 600mm	=	0 mm	
Shear Force Shift	= N/A	=	N/A mm	
Vrds Total	 = (Asw / bw S) x fywd x bw x S and Add to Vc = Total BS Capacity 	=	0 kN 291.9 kN	< V
			231.3 NN	<u> </u>
Shear Design	4			
Code EC2 Conc			528 fywd	434.
Shear kN Dia1	25 Ctrs or Nr (< 50) 6 Cov 1 60 As1 2945 S < Si 0 Ctrs or Nr (< 50)			39
V 600 Leg	0 Ctrs or Nr (<50) 0 S 0 Asw 0 % =		Min % =	0.00
Concrete K	= Min of $1 + (200/d1)^{0.5}$ or 2.0		1.616	
ρ1	= Min of As1 / bw d1 or 0.02		0.006	2
vrdc Shaar Earoa Shift	= Max of 0.035 K^1.5 fck^0.5 or $0.12 \times K \times (100 \times p1 \times fck)^{(1/3)}$		0.496 N/mm ²	-
Shear Force Shift	= d1 - (Min of (0.5 (0.6 (1. fok / 250)) fok / 1.5) or yrdd) y bw y d1 / 1000	=	528 mm	-11
Vrdc	= (Min of (0.5 (0.6 (1 - fck / 250)) fck / 1.5) or vrdc) x bw x d1 / 1000 = Asw / S		261.7 kN 0.000 mm	< V
Legs	= Asw / S = Ctrs or (bw / nr)	=	0.000 mm	
		-	U 11111	
Transv Leg Ctrs		_	0 mm	
Max Transv Ctrs	= Min of 0.75d1 or 600mm	=	0 mm	
		= = =	0 mm 593 mm 0 kN	

From QSE Analysis of a 16m x 12m Box Loaded Internally

Blue Denotes Tension Brown Denotes Compression

Note how shear compressive struts contribute to the force that passes around the corner

Comparison between BS8110 & EC2 For Normal SCommon DataVeD22Ultimate Applied Shear kNVeD2Ultimate Axial Load kNFfective Depth dd5Effective Depth dd521Concrete Strut Angle - not used in BS analysis θ 21Verticle Leg Angle - not used in BS analysis θ 21BS Designv0.51Utimate Applied Shear Stress N/mm2v0.51Tension Reinforcement %As / BD - Max usable = 3As1%1.00Min of (% As / BD) ^{1/3} or (3) ^{1/3} = 1.422A1.00(400 / D) ^{1/2} > 0.67 If No legs, >1.0 If Design LegsB.79AB/q0.79 x A x B / (ym = 1.25) N/mm2.79AB/q0.63(fou / 25) ^{1/3} but not > (40 / 25)1/3 = 1.1696Factor1.14Ult vc incl axial adjust or enhancement N/mm2vc max4.8Shear Capacity Due to Concrete Only kNAsL / BSr = Asv / bSv0.370.37 Fyv N/mm2v-vc N/mm2Vuc VL10V-vc N/mm2Shear Capacity Due To Legs kNVL10Shear Capacity RatioRatio2.212.21EC2 DesignWithout Shear Reinforcement CI 6.2.2CRd.c0.12CRd.c = 0.18 / (ym) Factorfak3.13Ation of 0.20 or As1 / bd Ratio210.0128 Day Cylinder Strength fak. N/mm2G3.13Mational Annex Value for k1 = EC2 recommendedk10.15National Annex Value for k1 = EC2 recommendedk10.16National Annex Valu	HAC-PRO	1 - 5	- 2 DNS 4 14 -722 252 2.00 0.0 0.054 0.9818 1.1221 0.6962 1.140 0.001 4.866 0 0.0000 435 0.000 0 0 0 0 0 0 0 0 0 0 0 0	5 127 14 234 2.00 0.0 0 0.542 0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 4.35 0.0000 946 188	SHEAR Note I 6 1382 1 538 2.00 21.8 90 2.571 0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045	Min Ult 7	8 61 -270 524 2.00 0.0 0 0.116 1.023 1.0077 0.9347 0.5953 1.140 0.618 4.866 324	Copyrig -oad = 9 120 -120 550 2.00 0.0 0 0.218 0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226	10 1 1 552 2.00 0.00 0.002 0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.000 0	09 HAC 11 387 1 382 2.00 21.8 90 1.688 1.404 1.1196 1.0116 0.7158 1.404 1.1196 1.0116 0.817 4.866 1.67 1.0025 4.35 1.093 251 438	12 96 20 2.0 21 3 1.25 1.17 0.933 1.14 1.18 4.86 14 0.00 ⁻ 4.3 0.75 24
Comparison between BS8110 & EC2 For Normal SCommon DataVeo22JItimate Applied Shear kNVeo22JItimate Axial Load kNd55Effective Depth dd55Concrete Strut Angle - not used in BS analysis θ 21Verticle Leg Angle - not used in BS analysis θ 21Verticle Leg Angle - not used in BS analysis θ 21S Designv0.55Jltimate Applied Shear Stress N/mm²v0.56Vol 0/ D) ^{v.2} > 0.67 If No legs, >1.0 If Design LegsB0.79 x A x B / (ym = 1.25) N/mm²roc max4.81%fou / 25) ^{1/3} but not > (40 / 25)1/3 = 1.1696Jactor1.14Jlt vc incl axial adjust or enhancement N/mm²vc max4.88Shear Capacity Due to Concrete Only kNVc33AST Fyx N/mm²Fyvd9.944.90Avec N/mm²Fyvd1.90Shear Capacity Due To Legs kNVL10Shear Capacity Ratio7.927.94Shear Capacity Ratio7.927.93C2 DesignVithout Shear Reinforcement CI 6.2.2CRd.c0.12Shear Capacity Ratio7.937.937.93Shear Capacity Ratio7.947.937.93C2 DesignVithout Shear Reinforcement CI 6.2.2CRd.c0.12Shear Capacity Ratio7.937.937.93Shear Capacity Ratio7.937.937.93Shear Capacity Ratio7.947.937.93Old = Min o	2 27 37 35 24 00 .8 90 67 67 67 67 67 67 63 77 1 69 40 43 66 37 44 18 56 91 2 78 22 11	Iculatio	4 14 -722 252 2.00 0.0 0 0.054 0.9818 1.1221 0.6962 1.140 0.001 4.866 0 0.0000 435 0.0000 0 0.35.004	127 14 234 2.00 0.0 0.542 0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188	6 1382 1 538 2.00 21.8 90 2.571 0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373	Min Ult 7	8 61 -270 524 2.00 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 120 -120 550 2.00 0.218 0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 0	+ or -1 10 1 1 552 2.00 0.0 0.002 0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.000 0 229	11 387 1 382 2.00 21.8 90 1.688 1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	9 2 2. 21 0.4 1.9 1.25 1.1 0.93 1.1 1.1 4.8 1 0.00 4 0.7 2
Common DataCase1JItimate Applied Shear kNVED22Itimate Axial Load kNNED-11Effective Depth dd55Distance From Support in Multiple of Effective Depthsxd2.1Concrete Strut Angle - not used in BS analysis θ 21Verticle Leg Angle - not used in BS analysis θ 21Sesignyv0.55JItimate Applied Shear Stress N/mm²v0.51Fension Reinforcement %AS / BD - Max usable = 3A1.00Alin of (% As / BD) ^{11/3} or (3) ^{11/3} = 1.422A1.00400 / D) ^{11/2} > 0.67 If No legs, >1.0 If Design LegsB.79AB/q0.79 x A x B / (ym = 1.25) N/mm²Factor1.1fcu / 25) ^{11/3} but not > (40 / 25)1/3 = 1.1696Factor1.1JIt vc incl axial adjust or enhancement N/mm²vc '0.6Asair MBear Capacity Due to Concrete Only kNVc3AsL / BSr = Asv / bSvRatio0.00.87 Fyv N/mm²Vut10Yothout Shear Capacity Due To Legs kNVc13Fotal Shear Capacity Due To Legs kNVc13Yithout Shear Reinforcement CI 6.2.2CRd,c0.11Cad,c = 0.18 / (ym) Factork1.611shear Capacity Ratiofak3020 x of x / kn // ^{1/3} 1.323.132Alace = 0.18 / (ym) Factorfak30a To 2.0 cr x + Shear Legs kNp10.01028 Day Cylinder Strength fakN/mm²6430 x op 1 x fak)	2 97 85 24 00 .8 90 		4 14 -722 252 2.00 0.0 0 0.946 0.946 0.946 0.9818 1.1221 0.6962 1.140 0.001 4.866 0.0000 435 0.0000 0 0 53.504	127 14 234 2.00 0.0 0.542 0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188	6 1382 1 538 2.00 21.8 90 2.571 0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1.944 1045	7	8 61 -270 524 2.00 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 120 -120 550 2.00 0.0 0 0.218 0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.0000 0 226	10 1 1 552 2.00 0.0 0.002 0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.000 0 229	11 387 1 382 2.00 21.8 90 1.688 1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	99222. 222. 221. 1.125 1.11 0.933 1.1 1.1 4.8 1 0.000 4 0.77 2
Ultimate Applied Shear kNVED22JItimate Axial Load kNStear Capacity Due to Legs kN VED 21EC2 DesignVerticle Leg Angle - not used in BS analysis θ 21Asside a Capacity Ratio σ σ σ Shear Capacity Ratio σ σ σ CC2 Design $Verticle Leg kn for Capacity Ratio\sigma\sigmaV\sigma\sigma\sigma\sigmaStear Capacity Ratio\sigma\sigma\sigmaCC2 DesignVerticle Leg kn for Capacity Ratio\sigma\sigmaV\sigma\sigma\sigma\sigma\sigmaStear Capacity Ratio\sigma\sigma\sigma\sigmaCC2 DesignVerticle Leg knVerticle Leg knVerticle Leg knVerticle Leg knV\sigma\sigma\sigma\sigma\sigmaStear Capacity Due To Legs kNVerticle Leg knVerticle Leg knVerticle Leg knVerticle Stear Capacity RatioVerticle Leg knVerticle Leg knVerticle Leg knV\sigma\sigma\sigma\sigma\sigmaStear Capacity RatioVerticle Leg knVerticle Leg knVerticle Leg knVerticle Leg knVithout Shear Reinforcement Cl 6.2.2Verticle Leg knVerticle Leg knVerticle Leg kn\sigmaVithout Shear Capacity Ratio\sigma\sigma\sigma\sigma\sigmaVithout Shear Capacity RatioVerticle Leg kn\sigma\sigma\sigmaVithout Shear Reinforcement Cl 6.2.2Verticle Leg kn$	97	3	14 -722 252 2.00 0.0 0.054 0.9818 1.1221 0.6962 1.140 0.001 4.866 0.0000 435 0.0000 0 0 53.504	127 14 234 2.00 0.0 0.542 0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188	1382 1 538 2.00 21.8 90 2.571 0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373		61 -270 524 2.00 0.0 0 0.116 1.023 1.023 1.023 1.140 0.618 4.866 324 0.0000 435 0.000 0 324	120 -120 550 2.00 0.0 0 0.218 0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.0000 0 226	1 1 552 2.00 0.0 0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.0000 0 229	387 1 382 2.00 21.8 90 1.688 1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	99222.222.222.222.2222.2222.22222.22222.2222
JItimate Axial Load kNNED-11Effective Depth dd53Concrete Strut Angle - not used in BS analysis θ 21Verticle Leg Angle - not used in BS analysis θ 21JItimate Applied Shear Stress N/mm² v 0.51Fension Reinforcement %As / BD - Max usable = 3A1.00Min of (% As / BD) ^{11/3} or (3) ^{11/3} = 1.422A1.00A00 / D) ^{11/2} > 0.67 If No legs, >1.0 If Design Legs.79AB/q0.633fcu / 25) ^{11/3} but not > (40 / 25)1/3 = 1.1696Factor1.1JIt vc incl axial adjust or enhancement N/mm²vc'0.6Vaximum Shear Stress at Support Face N/mm²Vc33Shear Capacity Due to Concrete Only kNVc33AsL / BSr = Asv / bSvRatio0.00Portal Shear Capacity Due To Legs kNVL10Fotal Shear Capacity RatioVL10Shear Capacity RatioRatio0.21EC2 DesignNithout Shear Reinforcement CI 6.2.2CRd.c0.12CRd.c = 0.18 / (ym) Factork 1.61p10.011f = Min of 0.02 or As1 / b d Ratiop10.01128 Day Cylinder Strength fckN/mm²k10.1310 x p1 x fck) ^{11/3} if c f or sheara1.00Altonal Annex Value for k1 = EC2 recommendedk10.14Vational Annex Value for k1 = EC2 recommendedk10.15Vational Annex Value for k1 = C2 recommendedk10.15Vational Annex Value for k1 = C2 recommendedk10.15 <th>85 24 00 .8 90 67 23 77 1 69 40 43 66 37 45 35 44 18 56 91</th> <th></th> <th>-722 252 2.00 0.0 0.946 0.948 1.1221 0.6962 1.140 0.001 4.866 0.0000 435 0.000 0 0 53.504</th> <th>14 234 2.00 0.0 0.542 0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188</th> <th>1 538 2.00 21.8 90 2.571 0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1.944 1045</th> <th></th> <th>-270 524 2.00 0.0 0 1.023 1.0077 0.9347 0.5953 1.140 0.618 4.866 324 0.0000 435 0.000 0 324</th> <th>-120 550 2.00 0.0 0.218 0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226</th> <th>1 552 2.00 0.0 0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.0000 0 229</th> <th>1 382 2.00 21.8 90 1.688 1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438</th> <th>9 2 2. 21 0.4 1.9 1.25 1.1 0.93 1.1 1.1 4.8 1 0.00 4 0.7 2</th>	85 24 00 .8 90 67 23 77 1 69 40 43 66 37 45 35 44 18 56 91		-722 252 2.00 0.0 0.946 0.948 1.1221 0.6962 1.140 0.001 4.866 0.0000 435 0.000 0 0 53.504	14 234 2.00 0.0 0.542 0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188	1 538 2.00 21.8 90 2.571 0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1.944 1045		-270 524 2.00 0.0 0 1.023 1.0077 0.9347 0.5953 1.140 0.618 4.866 324 0.0000 435 0.000 0 324	-120 550 2.00 0.0 0.218 0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226	1 552 2.00 0.0 0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.0000 0 229	1 382 2.00 21.8 90 1.688 1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	9 2 2. 21 0.4 1.9 1.25 1.1 0.93 1.1 1.1 4.8 1 0.00 4 0.7 2
Effective Depth dd55Distance From Support in Multiple of Effective Depths Concrete Strut Angle - not used in BS analysis θ 21Zencicle Leg Angle - not used in BS analysis θ 21Zenticle Leg Angle - not used in BS analysis θ 21S Design Ultimate Applied Shear Stress N/mm2 Fension Reinforcement %As / BD - Max usable = 3 Ain of (% As / BD) ^{11/3} or (3) ^{11/3} = 1.422 AA1.00 $400 / D$) $^{0.29} > 0.67 lf No legs, >1.0 lf Design Legs0.79 \times A \times B / (ym = 1.25) N/mm2fcu / 25) 11/3 but not > (40 / 25) 1/3 = 1.1696Maximum Shear Stress at Support Face N/mm2Shear Capacity Due to concrete Only kNAsL / BSr = Asv / bSvShear Capacity Due To Legs kNVc33Shear Capacity Due To Legs kNFotal Shear Capacity RatioVL10Creduc = 0.18 / (ym) Factor(s = Min of 0.02 or As 1 / b d Ratio0.10 \times p1 \times fck) ^{11/3}Autonal Annex Value for k1 = EC2 recommendedNational Annex Value for a for shearcd = \alpha fck / ym N/mm2CRd. c0.12C2 DesignWithout Annex Value for a for shearcd = \alpha fck / ym N/mm2G31.33Autonal Annex Value for a for shearcd = \alpha fck / ym N/mm2G31.33Autonal Annex Value for a for shearcd = \alpha fck / ym N/mm2G0.216Autonal Annex Value for a for shearcd = \alpha fck / ym N/mm2G0.216Autonal Annex Value for a for shearcd = \alpha fck / ym N/mm2G0.216Autonal Annex Value for a for shearcd = \alpha fck / ym N/mm2G0.216Autonal Annex Value for a for shearcd = \alpha fck / ym N/mm2G0.216Auto$	24 24 20 .8 90 .8 90 .8 .7 .1 .5 .2 .7 .1 .5 .9 .4 .5 .5 .4 .5 .5 .4 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5		252 2.00 0.0 0.946 0.946 0.9818 1.1221 0.6962 1.140 0.001 4.866 0.0000 435 0.000 0 0 53.504	234 2.00 0.0 0.542 0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188	538 2.00 21.8 90 2.571 0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373		524 2.00 0.0 1.023 1.0077 0.9347 0.5953 1.140 0.618 4.866 324 0.0000 435 0.000 0 324	550 2.00 0.0 0 0.218 0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.0000 0 226	552 2.00 0.0 0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.0000 0 229	382 2.00 21.8 90 1.688 1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	22 22 22 1.2 1.25 1.1 0.933 1.1 1.1 1.1 4.8 0.000 4 0.7 2
Distance From Support in Multiple of Effective Depths Concrete Strut Angle - not used in BS analysisxd2.1Concrete Strut Angle - not used in BS analysis θ 21A α α α SD DesignJitimate Applied Shear Stress N/mm² x 0.5 Jitin of (% As / BD) ^{11/3} or (3) ^{11/3} = 1.422A 1.00 $400 / D) ^{0.20} > 0.67 If No legs, >1.0 If Design LegsB79AB/\gamma0.6310.79 \times A \times B / (ym = 1.25) N/mm²79AB/\gamma0.631fcu / 25) 11/3 but not > (40 / 25) 1/3 = 1.1696Factor1.14V vc'vc'vc'0.633Shear Capacity Due to Concrete Only kNVc33AsL / BSr = Asv / bSvRatio0.000.79 \times A x B / (ym) FactorFywd44v-vc N/mm²v-vc1.94Shear Capacity Due To Legs kNVL100Yotal Shear Capacity Due To Legs kNVL100Fotal Shear Capacity Ratiorector + Shear Legs kNrector + Shear Capacity RatioEC2 Designrector + Shear Legs kNrector + Shear Capacity Ratiorector + Shear Capacity RatioShear Capacity Ratiorector + Shear Capacity Ratiorector + Shear Capacity Ratiorector + Shear Capacity RatioC2 Designrector + Shear Legs kNrector + Shear Capacity Ratiorector + Shear Capacity Ratiorector + Shear Capacity RatioC3 As L / BC / Qui do 1.1 (ym) Factorrector + Shear Capacity Ratiorector + Shear Capacity Ratiorector + Shear Capacity Ratiorector +$	200 .8 90 67 23 77 1 69 40 43 66 37 45 35 44 18 56 91 2 78 02 11		2.00 0.0 0.054 0.946 0.9818 1.1221 0.6962 1.140 0.001 4.866 0.0000 435 0.0000 0 0 53.504	2.00 0.0 0.542 0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188	2.00 21.8 90 2.571 0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373		2.00 0.0 0.0 1.023 1.0077 0.9347 0.5953 1.140 0.618 4.866 324 0.0000 435 0.000 0 324	2.00 0.0 0.218 0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226	2.00 0.02 0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.000 0 229	2.00 21.8 90 1.688 1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	2 2 1.25 1.1 0.93 1.1 1.1 4.8 1 0.00 4 0.7 2
Concrete Strut Angle - not used in BS analysis /erticle Leg Angle - not used in BS analysis θ α 21 α 3S Design JItimate Applied Shear Stress N/mm² Fension Reinforcement %As / BD - Max usable = 3 Min of (% As / BD) ^{1/3} or (3) ^{1/3} = 1.422 $400 / D$) ^{u.20} > 0.67 If No legs, >1.0 If Design Legs $0.79 \times A \times B / (\gammam = 1.25) N/mm²fcu / 25) 1/3 but not > (40 / 25) 1/3 = 1.1696JIt vc incl axial adjust or enhancement N/mm²Maximum Shear Stress at Support Face N/mm²Maximum Shear Stress at Support Face N/mm²MaxL / BSr = Asv / bSv0.87 Fyv N/mm²-vc N/mm²Shear Capacity Due to Concrete Only kNAsL / BSr = Asv / bSv0.87 Fyv N/mm²Fyw Mm²Fotal Shear Capacity Due To Legs kNFotal Shear Capacity Due To Legs kNFotal Shear Capacity RatioVcRatio0.000VL U100Vcv C N/mm²Cred, c = 0.18 / (ym) Factor(x \in Min of 2.0 \text{ or } 1 + (200 / d)^{1/2} Factor101 \times 0.12 \text{ or } As1 / b d Ratio100 \times \rho 1 \times fak)^{1/3}Natonal Annex Value for k1 = EC2 recommendedNational Annex Value for k1 = EC2 recommendedVational Annex Value for cfor shear\alpha = 0.54 / ym N/mm²0.27 fod N/mm²0.2 x fod N/mm²Cred, c 0.12k1 = 0.26 d A, 0000.216 d N/mm²0.22 fod N/mm²$.8 90 67 23 77 1 69 40 43 66 37 45 35 44 18 56 91		0.0 0.054 0.946 0.9818 1.1221 0.6962 1.140 0.001 4.866 0.0000 435 0.0000 0 0 53.504	0.0 0.542 0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188	21.8 90 2.571 0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373		0.0 0 1.023 1.0077 0.5953 1.140 0.618 4.866 324 0.0000 435 0.000 0 324	0.0 0.218 0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226	0.00 0.002 0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.0000 0 229	21.8 90 1.688 1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	2 0.4 1.25 1.1 0.93 1.1 1.1 4.8 1 0.00 4 0.7 2
Verticle Leg Angle - not used in BS analysis α 3S DesignJItimate Applied Shear Stress N/mm²vJItimate Applied Shear Stress N/mm²vTension Reinforcement %As / BD - Max usable = 3As1%Min of (% As / BD) ^{1/3} or (3) ^{1/3} = 1.422A400 / D) ^{0/20} > 0.67 If No legs, >1.0 If Design LegsB0.79 x A x B / (ym = 1.25) N/mm².79AB/ γ f.cu / 25) ^{1/3} but not > (40 / 25)1/3 = 1.1696FactorJIt vc incl axial adjust or enhancement N/mm²vc 'Waximum Shear Stress at Support Face N/mm²vc maxAsL / BSr = Asv / bSvRatio0.87 Fyv N/mm²Fyvwd/-vc N/mm²Vc 199Shear Capacity Due to Legs kNVLTotal Shear Capacity Due To Legs kNVLShear Capacity RatioRatio20.0 or 1 + (200 / d) ^{1/2} Factorkc = Min of 0.02 or As1 / b d Ratiop128 Day Cylinder Strength fck N/mm²fck 300100 x p1 x fck) ^{1/3} K1Natonal Annex Value for a for shearaicd = a fck / ym N/mm²fcd0.2 x fcd N/mm²0.2 fcd0.2 x fcd N/mm²0.2 f	20 20 20 20 20 20 20 20 20 20		0.054 0.946 0.9818 1.1221 0.6962 1.140 0.001 4.866 0.0000 435 0.0000 0 0 53.504	0.542 0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188	90 2.571 0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373		0.116 1.023 1.0077 0.9347 0.5953 1.140 0.618 4.866 324 0.0000 435 0.000 0 324	0.218 0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226	0.002 0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.0000 0 229	90 1.688 1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	0.4 1.25 1.1 0.93 1.1 1.1 4.8 1 0.00 4 0.7 2
BS DesignJultimate Applied Shear Stress N/mm²V0.50Tension Reinforcement %As / BD - Max usable = 3Min of (% As / BD) $^{1/3}$ or (3)(400 / D) $^{1/3}$ or (4)(5, L)25)(7, L)26)(7, L)27)(7, L)28)(7, L)28) <td>23 77 1 69 40 43 66 37 45 35 44 18 56 91</td> <td></td> <td>0.054 0.946 0.9818 1.1221 0.6962 1.140 0.001 4.866 0 0.0000 435 0.000 0 53.504</td> <td>0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188</td> <td>2.571 0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373</td> <td></td> <td>0.116 1.023 1.0077 0.5953 1.140 0.618 4.866 324 0.0000 435 0.000 0 324</td> <td>0.218 0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226</td> <td>0.002 0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.0000 0 229</td> <td>1.688 1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438</td> <td>0.4 1.25 1.25 1.7 0.93 1.7 1.7 4.8 1 0.00 2 0.7</td>	23 77 1 69 40 43 66 37 45 35 44 18 56 91		0.054 0.946 0.9818 1.1221 0.6962 1.140 0.001 4.866 0 0.0000 435 0.000 0 53.504	0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188	2.571 0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373		0.116 1.023 1.0077 0.5953 1.140 0.618 4.866 324 0.0000 435 0.000 0 324	0.218 0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226	0.002 0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.0000 0 229	1.688 1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	0.4 1.25 1.25 1.7 0.93 1.7 1.7 4.8 1 0.00 2 0.7
Ultimate Applied Shear Stress N/mm²v0.50Tension Reinforcement %As / BD - Max usable = 3As1%1.00Min of (% As / BD)1/3 or (3)1/3 = 1.422A(400 / D)0.25 > 0.67 lf No legs, >1.0 lf Design LegsB.79AB/y0.79 x A x B / (ym = 1.25) N/mm².79AB/y0.63(fcu / 25)1/3 but not > (40 / 25)1/3 = 1.1696Factor1.14vc'vc'0.64Maximum Shear Stress at Support Face N/mm²Vc33Shear Capacity Due to Concrete Only kNAsL / BSr = Asv / bSvVc330.87 Fyv N/mm²VL10Vc+VL13Shear Capacity Due To Legs kNVL10Vc+VL13Shear Capacity Due To Legs kNVL10Vc+VL13Shear Capacity RatioCRd,c0.11k0.21EC2 DesignWithout Shear Reinforcement Cl 6.2.2CRd,c = 0.18 / (ym) Factork1.61p1p1 = Min of 0.02 or As1 / b d Ratiop10.0101.6k3028 Day Cylinder Strength fckN/mm²k0.133.13'Natonal Annex Value for α for sheark10.150.2fcd4.00Neto / Ac = Axial / Area of Section N/mm²0.2fcdNeto/Ac0.30.2 x fcd N/mm²Neto / Ac or 0.2 fcd N/mm²0.2fcd0.00.2 x fcd N/mm²Neto / Ac or 0.2 fcd N/mm²0.2fcd0.0	23 77 1 69 40 43 66 37 45 35 44 18 56 91		0.946 0.9818 1.1221 0.6962 1.140 0.001 4.866 0.0000 435 0.0000 0 53.504	0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188	0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373		1.023 1.0077 0.9347 0.5953 1.140 0.618 4.866 324 0.0000 435 0.0000 0 324	0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226	0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.0000 0 229	1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	1.9 1.25 1.1 0.93 1.1 1.1 4.8 1 0.00 4 0.7
Jitimate Applied Shear Stress N/mm²v0.50Tension Reinforcement %As / BD - Max usable = 3As1%1.00Min of (% As / BD) ^{1/3} or (3) ^{1/3} = 1.422A1.00 $(400 / D)^{0.20} > 0.67$ If No legs, >1.0 If Design LegsB.79AB/y $0.79 \times A \times B / (ym = 1.25) N/mm².79AB/y0.63fcu / 25)1/3 but not > (40 / 25)1/3 = 1.1696Factor1.14vc'0.64.79AB/y0.63Maximum Shear Stress at Support Face N/mm²Vc33Shear Capacity Due to Concrete Only kNNasL / BSr = Asv / bSvNask0.87 Fyv N/mm²NcShear Capacity Due To Legs kNVL10Fotal Shear Capacity Pue To Legs kNVL10Fotal Shear Capacity RatioVL10Vithout Shear Reinforcement Cl 6.2.2Ratio0.21CRd,c = 0.18 / (ym) Factork1.61ch = Min of 2.0 or 1 + (200 / d)1/2 Factork1.61ch = Min of 0.02 or As 1 / b d Ratiop10.01028 Day Cylinder Strength fckN/mm²k100 x p1 x fck) 1/3National Annex Value for \alpha for sheara1.00fcd = \alpha fck / Ym N/mm²0.2 x fcd N/mm²Neb / Ac = Axial / Area of Section N/mm²0.2fcd0.2 x fcd N/mm²0.2 x fcd N/mm²0.2 x fcd N/mm²<$	23 77 1 69 40 43 66 37 45 35 44 18 56 91		0.946 0.9818 1.1221 0.6962 1.140 0.001 4.866 0.0000 435 0.0000 0 53.504	0.895 0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.0000 946 188	0.609 0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373		1.023 1.0077 0.9347 0.5953 1.140 0.618 4.866 324 0.0000 435 0.0000 0 324	0.381 0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226	0.243 0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.0000 0 229	1.404 1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	1.9 1.25 1.1 0.93 1.1 1.1 4.8 1 0.00 4 0.7
Min of (% As / BD) ^{1/3} or (3) ^{1/3} = 1.422 A 1.00 (400 / D) ^{0.25} > 0.67 lf No legs, >1.0 lf Design Legs B .79AB/y 0.63 0.79 x A x B / (ym = 1.25) N/mm² .79AB/y 0.63 (fcu / 25) ^{1/3} but not > (40 / 25)1/3 = 1.1696 .79AB/y 0.63 Ult vc incl axial adjust or enhancement N/mm² vc' 0.6 Maximum Shear Stress at Support Face N/mm² Vc 33 Shear Capacity Due to Concrete Only kN A 4.8 AsL / BSr = Asv / bSv 0.87 Fyv N/mm² Vc 1.9 Shear Capacity Due To Legs kN VL 10 Total Shear Capacity Ratio VL 10 Vc+VV N/mm² Stear Capacity Ratio 0.21 EC2 Design VL 10 Without Shear Reinforcement Cl 6.2.2 CRd,c 0.12 CRd,c = 0.18 / (Ym) Factor k 1.61 p1 = Min of 0.02 or As 1 / b d Ratio p1 0.010 28 Day Cylinder Strength fck N/mm² k1 0.15 National Annex Value for \alpha for shear a 1.00 fcd 20.0 0.2 x fcd N/mm²	77 1 69 40 43 66 37 45 35 44 18 56 91 2 78 02 11		0.9818 1.1221 0.6962 1.140 0.001 4.866 0.0000 435 0.000 0 53.504	0.9637 1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.000 946 188	0.8476 1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373		1.0077 0.9347 0.5953 1.140 0.618 4.866 324 0.0000 435 0.000 0 324	0.7248 0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226	0.6239 0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.000 0 229	1.1196 1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	1.25 1.1 0.93 1.1 4.8 1 0.00 4 0.7
(400 / D) $U^{25} > 0.67$ If No legs, >1.0 If Design LegsB $0.79 \times A \times B / (\gamma m = 1.25) N/mm^2$ $.79AB/\gamma$ 0.631 $(fcu / 25)^{1/3}$ but not > $(40 / 25)1/3 = 1.1696$ Factor 1.14 Vc' 0.631 Vc max Vc' Maximum Shear Stress at Support Face N/mm² Vc' 0.631 Shear Capacity Due to Concrete Only kN Vc 33 AsL / BSr = Asv / bSv 0.00 Vc $Nmm²$ 0.87 Fyv N/mm² Vc 1.94 v -vc N/mm² VL 100 Shear Capacity Due To Legs kN $Vc +VL$ 133 Shear Capacity Ratio VL 100 V-vc N/mm² VL 100 Shear Capacity Ratio VL 100 Vc +VL 133 $Ratio$ 0.213 EC2 Design VL 100 $Vc +VL$ 133 Without Shear Reinforcement Cl 6.2.2 CRd,c 0.12 CRd,c = 0.18 / (γm) Factor k 1.617 $\rho 1$ = Min of 2.0 or $1 + (200 / d)^{1/2}$ Factor ρ 1.001 $\rho 1$ = Min of 0.02 or As 1 / b d Ratio ρ 0.12 28 Day Cylinder Strength fckN/mm² k 0.15 National Annex Value for α for shear α 1.000 fcd = α fck / γm N/mm² 0.2 fcd N/mm² 0.2 fcd $0.2 x$ fcd N/mm² 0.2 fcd n/mm² 0.2 fcd $0.2 x$ fcd N/mm² 0.2 fcd n/mm² 0.3	1 69 40 43 66 37 45 35 44 18 56 91 2 78 02 11		1.1221 0.6962 1.140 0.001 4.866 0.0000 435 0.000 0 53.504	1.1434 0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.000 946 188	1 0.5357 1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373		0.9347 0.5953 1.140 0.618 4.866 324 0.0000 435 0.000 0 324	0.9235 0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226	0.9226 0.3638 1.140 0.415 4.866 229 0.0000 435 0.000 0 229	1.0116 0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	1.1 0.93 1.1 1.1 4.8 0.00 4 0.7
(400 / D) $U^{25} > 0.67$ If No legs, >1.0 If Design LegsB $0.79 \times A \times B / (\gamma m = 1.25) N/mm^2$ $.79AB/\gamma$ 0.631 $(fcu / 25)^{1/3}$ but not > $(40 / 25)1/3 = 1.1696$ Factor 1.14 Vc' 0.631 Vc max Vc' Maximum Shear Stress at Support Face N/mm² Vc' 0.631 Shear Capacity Due to Concrete Only kN Vc 33 AsL / BSr = Asv / bSv 0.00 Vc $Nmm²$ 0.87 Fyv N/mm² Vc 1.94 v -vc N/mm² VL 100 Shear Capacity Due To Legs kN $Vc +VL$ 133 Shear Capacity Ratio VL 100 V-vc N/mm² VL 100 Shear Capacity Ratio VL 100 Vc +VL 133 $Ratio$ 0.213 EC2 Design VL 100 $Vc +VL$ 133 Without Shear Reinforcement Cl 6.2.2 CRd,c 0.12 CRd,c = 0.18 / (γm) Factor k 1.617 $\rho 1$ = Min of 2.0 or $1 + (200 / d)^{1/2}$ Factor ρ 1.001 $\rho 1$ = Min of 0.02 or As 1 / b d Ratio ρ 0.12 28 Day Cylinder Strength fckN/mm² k 0.15 National Annex Value for α for shear α 1.000 fcd = α fck / γm N/mm² 0.2 fcd N/mm² 0.2 fcd $0.2 x$ fcd N/mm² 0.2 fcd n/mm² 0.2 fcd $0.2 x$ fcd N/mm² 0.2 fcd n/mm² 0.3	40 43 66 37 45 35 44 18 56 91		0.6962 1.140 0.001 4.866 0.0000 435 0.000 0 53.504	0.6964 1.140 -3.240 4.866 -758 0.0000 435 0.000 946 188	1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373		0.5953 1.140 0.618 4.866 324 0.0000 435 0.000 0 324	0.423 1.140 0.410 4.866 226 0.0000 435 0.000 0 226	0.3638 1.140 0.415 4.866 229 0.0000 435 0.000 0 229	0.7158 1.140 0.817 4.866 187 0.0025 435 1.093 251 438	0.93 1.1 4.8 1 0.00 4 0.7
If cu / 25)I/3but not > (40 / 25)I/3 = 1.1696FactorI.14Ult vc incl axial adjust or enhancement N/mm²vc'0.6Maximum Shear Stress at Support Face N/mm²vc max4.8Shear Capacity Due to Concrete Only kNVc3AsL / BSr = Asv / bSv0.00Fywd40.87 Fyv N/mm²v-vc N/mm²v-vc1.9Shear Capacity Due To Legs kNv-vc1.9Total Shear Capacity = Conc + Shear Legs kNVL10Total Shear Capacity RatioVL10EC2 DesignRatio0.21Without Shear Reinforcement CI 6.2.2Ratio0.21CRd,c = 0.18 / (ym) Factork1.61ch = Min of 0.02 or As1 / b d Ratiop10.01028 Day Cylinder Strength fckN/mm²fck30(100 x p1 x fck) ^{11/3} i/3i/3i/3National Annex Value for α for sheara1.00fcd = α fck / γ m N/mm²0.21i/40.2 x fcd N/mm²i/3aNeb / Ac = Axial / Area of Section N/mm²0.2fcdNeb / Ac = Axial / Area of Section N/mm²0.2fcdx = Min of:- Neb / Ac or 0.2 fcd N/mm²x	40 43 66 37 45 35 44 18 56 91		1.140 0.001 4.866 0.0000 435 0.000 0 53.504	1.140 -3.240 4.866 -758 0.0000 435 0.000 946 188	1.140 0.611 4.866 329 0.0045 435 1.944 1045 1373		1.140 0.618 4.866 324 0.0000 435 0.000 0 324	1.140 0.410 4.866 226 0.0000 435 0.000 0 226	1.140 0.415 4.866 229 0.0000 435 0.000 0 229	1.140 0.817 4.866 187 0.0025 435 1.093 251 438	1.1 1.2 4.8 0.00 2 0.7
Ult vc incl axial adjust or enhancement N/mm²vc' 0.6 Maximum Shear Stress at Support Face N/mm²vc max4.8Shear Capacity Due to Concrete Only kNVc3AsL / BSr = Asv / bSvRatio0.00 0.87 Fyv N/mm²v-vc1.9y-vc N/mm²v-vc1.9Shear Capacity Due To Legs kNVc10Total Shear Capacity P Conc + Shear Legs kNVc +VL13Shear Capacity RatioRatio0.21EC2 DesignRatio0.21Without Shear Reinforcement Cl 6.2.2Ratio0.21CRd,c = 0.18 / (ym) Factork1.61 ρ 1 = Min of 2.0 or 1 + (200 / d) ^{1/2} Factork1.61 ρ 1 = Min of 0.02 or As1 / b d Ratiop10.01028 Day Cylinder Strength fckN/mm²3.13'Natonal Annex Value for α for sheark10.15 $fcd = \alpha$ fck / γ m N/mm²0.2 fcd4.00Neto / Ac = Axial / Area of Section N/mm²0.2fcd $0.2 x$ fcd N/mm² $0.2 fcd$ N/mm²0.2fcd $0.2 x$ fcd N/mm² $0.2 fcd$ N/mm² $0.2 fcd$ $0.2 x$ fcd N/mm² $0.2 fcd$ N/mm² $0.2 fcd$	43 66 37 45 35 44 18 56 91 2 78 02 11		0.001 4.866 0 0.0000 435 0.000 0 53.504	-3.240 4.866 -758 0.0000 435 0.000 946 188	0.611 4.866 329 0.0045 435 1.944 1045 1373		0.618 4.866 324 0.0000 435 0.000 0 324	0.410 4.866 226 0.0000 435 0.000 0 226	0.415 4.866 229 0.0000 435 0.000 0 229	0.817 4.866 187 0.0025 435 1.093 251 438	1.1 4.8 0.00 2 0.7
Maximum Shear Štress at Support Face N/mm²vc max4.8Shear Capacity Due to Concrete Only kNVc33AsL / BSr = Asv / bSvRatio0.000.87 Fyv N/mm²Fywd44v-vc N/mm²v-vc1.9Shear Capacity Due To Legs kNVc +VL13Total Shear Capacity active	66 37 45 35 44 18 56 91 2 78 02 11		4.866 0 435 0.000 0 53.504	4.866 -758 0.0000 435 0.000 946 188	4.866 329 0.0045 435 1.944 1045 1373		4.866 324 0.0000 435 0.000 0 324	4.866 226 0.0000 435 0.000 0 226	4.866 229 0.0000 435 0.000 0 229	4.866 187 0.0025 435 1.093 251 438	4.8 0.00 2 0.7
Shear Capacity Due to Concrete Only kNVc33AsL / BSr = Asv / bSvRatio 0.00 0.87 Fyv N/mm²Fywd44 v -vc N/mm² v -vc 1.9 Shear Capacity Due To Legs kNVL10Total Shear Capacity = Conc + Shear Legs kNVc+VL13Shear Capacity RatioRatio 0.21 EC2 DesignRatio 0.21 Without Shear Reinforcement Cl 6.2.2Ratio 0.21 CRd,c = 0.18 / (ym) Factork 1.617 $c = Min of 2.0 or 1 + (200 / d)^{1/2} Factork1.617c = Min of 0.02 or As1 / b d Ratiop10.01028 Day Cylinder Strength fckN/mm²fck(100 \times p1 \times fck)^{1/3}1.331.33Natonal Annex Value for \alpha for shear\alpha1.00c = \alpha fck / \gamma m N/mm²0.211.000.2 \times fcd N/mm²0.210.210.2 \times fcd N/mm²0.210.210.2 \times fcd N/mm²0.210.120.2 \times fcd N/mm²0.210.120.2 \times fcd N/mm²0.210.210.2 \times fcd N/mm²$	37 45 35 44 18 56 91 22 78 22 78 22		0.0000 435 0.000 0 53.504	-758 0.0000 435 0.000 946 188	329 0.0045 435 1.944 1045 1373		324 0.0000 435 0.000 0 324	226 0.0000 435 0.000 0 226	229 0.0000 435 0.000 0 229	187 0.0025 435 1.093 251 438	0.00
AsL / BSr = Asv / bSvRatio0.000.87 Fyv N/mm²Fywd44/-vc N/mm²1.9Shear Capacity Due To Legs kNVL10Total Shear Capacity = Conc + Shear Legs kNVc+VL13Shear Capacity RatioCrd, c0.219EC2 DesignRatio0.219Without Shear Reinforcement Cl 6.2.2CRd, c0.12CRd, c = 0.18 / (ym) Factork1.617c = Min of 2.0 or 1 + (200 / d) ^{1/2} Factork1.617c1 = Min of 0.02 or As1 / b dRatiop128 Day Cylinder Strength fakN/mm²1.016100 x p1 x fak) ^{1/3} Natonal Annex Value for a for sheark1ad = a fak / ym N/mm²0.2160.2160.2 x fad N/mm²0.2164.00NED / Ac = Axial / Area of Section N/mm²0.216xop = Min of:- NED / Ac or 0.2 fad N/mm²0.216	45 335 44 18 56 91 2 2 78 22 78 22 11		0.0000 435 0.000 0 53.504	0.0000 435 0.000 946 188	0.0045 435 1.944 1045 1373		0.0000 435 0.000 0 324	0.0000 435 0.000 0 226	0.0000 435 0.000 0 229	0.0025 435 1.093 251 438	0.0
D.87 Fyv N/mm²Fywd44 $V - vc$ N/mm²1.9Shear Capacity Due To Legs kNVL10Fotal Shear Capacity = Conc + Shear Legs kNVL13Shear Capacity RatioCrvt L13EC2 DesignRatio0.211Without Shear Reinforcement Cl 6.2.2CRd,c0.12CRd,c = 0.18 / (ym) FactorK1.617c = Min of 2.0 or 1 + (200 / d) ^{1/2} Factork1.617c1 = Min of 0.02 or As1 / b d Ratiop10.01028 Day Cylinder Strength fckN/mm²k1Natonal Annex Value for k1 = EC2 recommendedk10.15Ational Annex Value for a for sheara1.00cd = a fck / ym N/mm²0.2 x fcd N/mm²0.2 fcd 4.00NED / Ac = Axial / Area of Section N/mm²0.2 fcd N/mm²0.2 fcd -0.3ot = Min of:- NED / Ac or 0.2 fcd N/mm²ot = 0.3ot = 0.2	35 44 18 56 91 2 2 78 02 11		435 0.000 0 53.504	435 0.000 946 188	435 1.944 1045 1373		435 0.000 0 324	435 0.000 0 226	435 0.000 0 229	435 1.093 251 438	0.
v-vcN/mm²v-vc1.9Shear Capacity Due To Legs kNVL10Total Shear Capacity = Conc + Shear Legs kNVL13Shear Capacity RatioRatio0.219EC2 DesignRatio0.219Without Shear Reinforcement Cl 6.2.2CRd,c = 0.18 / (ym) Factor0.12CRd,c = 0.18 / (ym) Factork1.617c = Min of 2.0 or 1 + (200 / d) ^{1/2} Factorp10.010c1 = Min of 0.02 or As1 / b d Ratiop10.01028 Day Cylinder Strength fckN/mm²1.617(100 x p1 x fck) ^{1/3} Natonal Annex Value for a for sheark1cd = a fck / ymN/mm²0.216d0.2 x fcdN/mm²0.216d0.2 x fcdNeD/Acor0.2 x fcdNeD/Acor0 x p = Min of:-NeD / Acor0 x p = Min of:-NeD / Ac <td>44 18 56 91 2 2 78 22 11</td> <td></td> <td>0.000 0 53.504</td> <td>0.000 946 188</td> <td>1.944 1045 1373</td> <td></td> <td>0.000 0 324</td> <td>0.000 0 226</td> <td>0.000 0 229</td> <td>1.093 251 438</td> <td>0.1</td>	44 18 56 91 2 2 78 22 11		0.000 0 53.504	0.000 946 188	1.944 1045 1373		0.000 0 324	0.000 0 226	0.000 0 229	1.093 251 438	0.1
Shear Capacity Due To Legs kNVL10Total Shear Capacity = Conc + Shear Legs kNVc+VL13Shear Capacity RatioRatio0.21EC2 DesignRatio0.21Without Shear Reinforcement Cl 6.2.2CRd,c = 0.18 / (ym) FactorCRd,c = 0.18 / (ym) FactorC = Min of 2.0 or 1 + (200 / d) ^{1/2} Factork1.617o1 = Min of 0.02 or As1 / b d Ratiop10.01028 Day Cylinder Strength fckN/mm²fckNatonal Annex Value for k1 = EC2 recommendedk10.18National Annex Value for a for sheara1.00fcd = a fck / ymN/mm²0.2fcd0.2 x fcd N/mm²0.2fcd4.00Neb / Ac = Axial / Area of Section N/mm²0.2 fcd $\sigma_{cp} =$ Min of:-Neb / Ac or0.2 fcdNeb / Ac or0.2 fcdN/mm²National Annex Value for a for shearc-0.3fcd20.01fcd20.020.2 x fcdN/mm²Neb / Ac or0.2 fcdfcd-0.3fcd0.2 fcdNeb / Ac or0.2 fcdNational Annex Value for a for shearfcd20.01fcd20.020.2 fcd0.02Neb / Ac or0.2 fcdNeb / Ac or0.2 fcdNational Annex0.2 fcdNational Annex0.2 fcdNeb / Ac or0.2 fcd </td <td>18 56 91 2 78 02 11</td> <td></td> <td>0 0 53.504</td> <td>946 188</td> <td>1045 1373</td> <td></td> <td>0 324</td> <td>0 226</td> <td>0 229</td> <td>251 438</td> <td></td>	18 56 91 2 78 02 11		0 0 53.504	946 188	1045 1373		0 324	0 226	0 229	251 438	
Total Shear Capacity = Conc + Shear Legs kNVc+VL133 RatioShear Capacity Ratio0.214Shear Capacity Ratio0.214EC2 Design Without Shear Reinforcement Cl 6.2.2CRd,cCRd,c = 0.18 / (ym) Factor < = Min of 0.02 or 1 + (200 / d) ^{1/2} Factor o1 = Min of 0.02 or As1 / b d Ratio 28 Day Cylinder Strength fckCRd,c0.12 & Kational Annex Value for k1 = EC2 recommended National Annex Value for a for sheark10.12 x fcd N/mm² col = a fck / ym N/mm²k10.2 x fcd N/mm² Nep / Ac = Axial / Area of Section N/mm²0.2 fcd0.02 x fcd N/mm² orcp = Min of:-Nep / Ac or 0.2 fcd N/mm²	56 91 2 78 02 11		0 53.504	188	1373		324	226	229	438	
Shear Capacity RatioRatio0.219EC2 Design Without Shear Reinforcement CI 6.2.2CRd.c = 0.18 / (ym) Factor $\varsigma = Min of 2.0 \text{ or } 1 + (200 / d)^{1/2}$ Factor o1 = Min of 0.02 or As1 / b d Ratio 28 Day Cylinder Strength fck N/mm² (100 x p1 x fck) ^{11/3} CRd.c 0.12 k 1.617 p1 0.010 fck 30 3.137 National Annex Value for α for shear fcd = α fck / γ m N/mm² 0.2 x fcd N/mm² NED / Ac = Axial / Area of Section N/mm² $\sigma_{cp} = Min of:- NED / Ac or 0.2 fcd N/mm²CRd.c 0.12k 0.219$	91 2 78 02 11										
EC2 DesignWithout Shear Reinforcement Cl 6.2.2 $C_{Rd,c} = 0.18 / (\gammam)$ FactorCRd,c0.12 $k = Min of 2.0 \text{ or } 1 + (200 / d)^{1/2}$ Factork1.617 $p1 = Min of 0.02 \text{ or } As1 / b d Ratiop10.01028 Day Cylinder Strength fckN/mm²fck30(100 \times p1 \times fck)^{1/3}Stational Annex Value for k1 = EC2 recommendedk10.15National Annex Value for \alpha for sheara1.00fcd20.0fcd = \alpha fck / \gammam N/mm²0.2 fcd0.2 fcd4.00NED / Ac = Axial / Area of Section N/mm²\sigma_{cp}-0.3\sigma_{cp} = Min of:NED / Ac or 0.2 fcd N/mm²\sigma_{cp}-0.3$	2 78 02			0.6743	1.0063		0.1877	0.532	0.0059	0.8841	0.20
Without Shear Reinforcement Cl 6.2.2 CRd,c 0.12 $CRd,c = 0.18 / (\gammam)$ Factor k 1.617 $p1 = Min of 2.0 \text{ or } 1 + (200 / d)^{1/2}$ Factor p1 0.010 $p1 = Min of 0.02 \text{ or } As1 / b \text{ d Ratio}$ p1 0.010 28 Day Cylinder Strength fck N/mm² fck 30 (100 x p1 x fck) ^{1/3} Natonal Annex Value for k1 = EC2 recommended k1 0.15 National Annex Value for α for shear α 1.00 fcd 20.00 fcd = α fck / γ m N/mm² 0.2fcd 4.00 NED/AC -0.3 σ_{cp} -0.3	78)2 11		0.12								
)) 1 1 2 2 4 8 7		1.8903 0.0095 30 3.0506 0.15 1.00 20.0 4.00 -2.41 -2.41 83 0.50 35 83 0.528 1332 83 252	0.0090 30	0.0061 30		0.12 1.6178 0.0102 30 3.1311 0.15 1.00 20.0 4.00 -0.45 -0.45 283 0.39 171 283 0.528 2767 283 524	0.0038 30	0.12 1.6019 0.0024 30 1.9385 0.15 1.00 20.0 4.00 0.00 206 0.39 215 215 0.528 2915 215 552		
Asw / s mm $z = 0.9d$ mm $ywd = fyk / \gamma m$ N/mm²Asw/s $z = 0.9d$ mm $ywd = fyk / \gamma m$ N/mm²Asw/s $z = 4.46$ $ywd = fyk / \gamma m$ N/mm² $/rd_s = (Asw / s) Z fywd (cot \theta + \cot \alpha) Sin \alpha kN\sigma_{CP} / fcd = (NED / Ac) / fcd or 0 If Tension\alpha_{CW} = 1 \text{ or } (1 + \sigma_{CP} / fcd) \text{ or } 1.25 \text{ or } 2.5(1 - \sigma_{CP} / fcd)Red Factor = v1 = v x (1 - 0.5Cosa)/rd_max = \alpha_{Cw} bw z v1 f_{cd} (cot \theta + \cot \alpha)/(1 + \cot^2\theta)Asw/sVRd_s4.46229\sigma_{CP} / fcdWith Shear Legs ResistanceShear Shift Distance = z (\cot \theta - \cot \alpha) / 2V1.00VYalueUsed For calculating CapacityV1.71Matio$	6 5 1 0 0 8 7				4.468 483.75 435 2350 0.00 1.00 0.528 1762 1762 605			222	215	1.508 343.8 435 564 0.00 1.00 0.528 751 564 430 564	1.04 186 43: 21: 0.2 1.2 0.52 50: 21: 23: 23: 21:

	STEP B	Y STE	2 DESI P SHE AC-PRO	AR CA	ALCUL	ATIO	NS SHEAR	6	How			C rowder 009 HAC	
Comparison between BS8110) & EC2 For Nor						-		Axial I	_oad =	+ or -1	I	
Common Data	Case	13	14	15	16	17	18	19	20	21	22	23	24
JItimate Applied Shear kN	VED	393	397	387	50	275	337	275	<u>20</u> 50	<u></u> 50	150		
JItimate Axial Load kN	NED	1	1	1	1600	2500	2500	2500	1500	1500	1	1	-4
Effective Depth d	d	536	388	378	390	359	439	439	244	244	528	528	
Distance From Support in Multiple of Effective I	Depths xd	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.00	2.
Concrete Strut Angle - not used in BS analysis	θ	21.8	21.8	21.8	21.8	21.8	21.8	45.0	21.8	45.0	45.0	45.0	29
Verticle Leg Angle - not used in BS analysis	α	90	90	90	90	90	90	90	90	90	90	90	
BS Design												<u> </u>	
JItimate Applied Shear Stress N/mm ²	v	0.734			0.366	1.276	1.535	1.252	0.683	0.683	0.474		
Tension Reinforcement %As / BD - Max usable		0.733			0.295		1.465	1.465	2.197	2.197	0.310		
Min of (% As / BD) $^{1/3}$ or (3) $^{1/3}$ = 1.422	A	0.9018	0.8142				1.1357	1.1357	1.3001			0.6769	
(400 / D) ^{0.25} > 0.67 If No legs, >1.0 If Design L		1		1.0142		1.0273	1	1	1.1315			1	1.12
0.79 x A x B / (γm = 1.25) N/mm ²	.79AΒ/γ			0.8357	0.4232	0.742		0.7178	0.9297	0.9297		0.4278	
$(fcu / 25)^{1/3}$ but not > $(40 / 25)1/3 = 1.1696$	Factor	1.140		-	1.140		1.140	1.140	1.140	1.140	-		
Jlt vc incl axial adjust or enhancement N/mm ²		0.643			0.001	-3.240	0.611	0.976	0.618	0.410			
Maximum Shear Stress at Support Face N/mm					4.866		4.866	4.866	4.866	4.866	4.866		
Shear Capacity Due to Concrete Only kN	Vc	344			0	-698	134	214	45	30	131		
AsL / BSr = Asv / bSv	Ratio	0.0010			0.0022	0.0013	0.0016		0.0026	0.0026			
0.87 Fyv N/mm²	Fywd	435			435	435	435	435	435	435	435		
v-vc N/mm²	V-VC	0.456			0.976		0.683	0.683	1.139	1.139			
Shear Capacity Due To Legs kN	VL	248			1031	1209	446	331	210	219			
Total Shear Capacity = Conc + Shear Legs Shear Capacity Ratio	kN Vc+VL Ratio	592 0.6636		388 0.9964	1031	511 0.5381	581 0.5803	545	255	249		635 0.2361	-
EC2 Design Nithout Shear Reinforcement Cl 6.2.2	CRd,c	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.1
C _{Rd,c} = 0.18 / (γm) Factor < = Min of 2.0 or 1 + (200 / d) ^{1/2} Factor	K K	1.6111										1.6157	
p1 = Min of 0.02 or As1 / b d Ratio	ρ1											0.0031	
28 Day Cylinder Strength f_{ck} N/mm ²	fck	30	30	30	30	30	30	30	30	30	30	30	30
$(100 \times \rho 1 \times f_{ck})^{1/3}$	ICK	2.802	2.53	3.9149			3.529	3.529		3.9149			
Natonal Annex Value for k1 = EC2 recommend	led k1	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.1
National Annex Value for α for shear	α	1.00	1.00	1.00		1.00	1.00	1.00	1.00				
$f_{cd} = \alpha f_{ck} / \gamma_m N/mm^2$	fcd				1.00					1.00	1.00		1.0
	ICU	20.0	20.0	20.0	1.00 20.0	20.0	20.0	20.0	20.0	1.00 20.0	1.00 20.0	1.00 20.0	
0.2 x fcd N/mm ²	0.2fcd	20.0 4.00	20.0 4.00									1.00	20.
0.2 x fcd N/mm² NED / Ac = Axial / Area of Section N/mm²				20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	1.00 20.0	1.0 20. 4.0 -1.3
$0.2 \text{ x f}_{cd} \text{ N/mm}^2$ NED / Ac = Axial / Area of Section N/mm ² σ_{cp} = Min of:- NED / Ac or 0.2 fcd N/mm ²	0.2fcd NED/AC σcp	4.00	4.00	20.0 4.00	20.0 4.00	20.0 4.00	20.0 4.00	20.0 4.00	20.0 4.00	20.0 4.00	20.0 4.00	1.00 20.0 4.00	20. 4.0 -1.3
0.2 x f _{cd} N/mm ² NED / Ac = Axial / Area of Section N/mm ² σ _{cp} = Min of:- NED / Ac or 0.2 f _{cd} N/mm ² √Rd,c = (CRd,c k (100ρ1 fck) ^{1/3} + k1 σ _{cp}) bw d k	0.2fcd NED/AC σcp	4.00 0.00 0.00 290	4.00 0.00 0.00 122	20.0 4.00 0.00 0.00 184	20.0 4.00 10.16 4.00 140	20.0 4.00 8.33 4.00 290	20.0 4.00 8.33 4.00 288	20.0 4.00 8.33 4.00 288	20.0 4.00 16.67 4.00 109	20.0 4.00 16.67 4.00 109	20.0 4.00 0.00 0.00 129	1.00 20.0 4.00 0.00 0.00 129	20. 4.0 -1.3 -1.3 14
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.2fcd NED/AC σcp VRd,c Vmin	4.00 0.00 0.00 290 0.39	4.00 0.00 0.00 122 0.43	20.0 4.00 0.00 0.00 184 0.44	20.0 4.00 10.16 4.00 140 0.43	20.0 4.00 8.33 4.00 290 0.44	20.0 4.00 8.33 4.00 288 0.42	20.0 4.00 8.33 4.00 288 0.42	20.0 4.00 16.67 4.00 109 0.50	20.0 4.00 16.67 4.00 109 0.50	20.0 4.00 0.00 0.00 129 0.39	1.00 20.0 4.00 0.00 0.00 129 0.39	20. 4.0 -1.3 -1.3 14 0.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.2fcd NED/AC σcp VRd,c Vmin VRd,cmin	4.00 0.00 0.00 290 0.39 210	4.00 0.00 0.00 122 0.43 101	20.0 4.00 0.00 0.00 184 0.44 99	20.0 4.00 10.16 4.00 140 0.43 141	20.0 4.00 8.33 4.00 290 0.44 225	20.0 4.00 8.33 4.00 288 0.42 223	20.0 4.00 8.33 4.00 288 0.42 223	20.0 4.00 16.67 4.00 109 0.50 81	20.0 4.00 16.67 4.00 109 0.50 81	20.0 4.00 0.00 0.00 129 0.39 125	1.00 20.0 4.00 0.00 0.00 129 0.39 125	20. 4.0 -1.3 -1.3 14 0.5 75
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.2fcd NED/AC σcp VRd,c Vmin VRd,cmin VRd,cmin	4.00 0.00 0.00 290 0.39 210 290	4.00 0.00 0.00 122 0.43 101 122	20.0 4.00 0.00 0.00 184 0.44 99 184	20.0 4.00 10.16 4.00 140 0.43 141 141	20.0 4.00 8.33 4.00 290 0.44 225 290	20.0 4.00 8.33 4.00 288 0.42 223 288	20.0 4.00 8.33 4.00 288 0.42 223 288	20.0 4.00 16.67 4.00 109 0.50 81 109	20.0 4.00 16.67 4.00 109 0.50 81 109	20.0 4.00 0.00 129 0.39 125 129	1.00 20.0 4.00 0.00 0.00 129 0.39 125 129	20. 4.0 -1.3 -1.3 14 0.5 75 14
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.2fcd NED/AC σcp VRd,c Vmin VRd,cmin VRd,cmin VRd,cmin VRd,c	4.00 0.00 290 0.39 210 290 0.528	4.00 0.00 122 0.43 101 122 0.528	20.0 4.00 0.00 184 0.44 99 184 0.528	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528	20.0 4.00 0.00 129 0.39 125 129 0.528	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528	20. 4.0 -1.3 -1.3 14 0.5 75 14 0.5
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.2fcd NED/AC σcp VRd,c Vmin VRd,cmin VRd,cmin VRd,cmin VRd,cmin VRd,c v Vrd,c VRD	4.00 0.00 290 0.39 210 290 0.528 2827	4.00 0.00 122 0.43 101 122 0.528 1229	20.0 4.00 0.00 184 0.44 99 184 0.528 1198	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386	20.0 4.00 0.00 129 0.39 125 129 0.528 1671	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671	20. 4.0 -1.3 -1.3 14 0.5 75 14 0.52 130
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.2fcd NED/AC σcp VRd,c Vmin VRd,cmin VRd,cmin VRd,cmin VRd,c	4.00 0.00 290 0.39 210 290 0.528	4.00 0.00 122 0.43 101 122 0.528	20.0 4.00 0.00 184 0.44 99 184 0.528	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528	20.0 4.00 0.00 129 0.39 125 129 0.528	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528	20. 4.0 -1.3 -1.3 14 0.5 75 14 0.5 130 14
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.2fcd NED/AC סכף VRd,c Vmin VRd,cmin VRd,cmin VRd,cmin VRd,cmin VRd,c VRD,c VRd,c VRD,c V V V V V V V V V V V V V V V V V V V	4.00 0.00 290 0.39 210 290 0.528 2827 290 536	4.00 0.00 122 0.43 101 122 0.528 1229 122 388	20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244	20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528	20. 4.0 -1.3 -1.3 14 0.5 75 14 0.5 130 14 24
$\begin{array}{llllllllllllllllllllllllllllllllllll$	0.2fcd NED/AC סכף VRd,c Vmin VRd,cmin VRd,cmin VRd,cmin VRd,c V V fcd kN VED VC mm Asw/s	4.00 0.00 290 0.39 210 290 0.528 2827 290 536	4.00 0.00 122 0.43 101 122 0.528 1229 122 388 1.0472	20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378 1.0472	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390 0.7854	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359 0.7854	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854	20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944	20. 4.0 -1.3 -1.3 14 0.5 14 0.5 130 14 24 3.49
0.2 x f _{cd} N/mm ² NED / Ac = Axial / Area of Section N/mm ² $\sigma_{cp} = Min of:- NED / Ac or 0.2 fcd N/mm2 /Rd,c = (CRd,c k(100p1 fck)1/3 + k1 \sigma_{cp}) bw d k/rd,c min = (Vmin + k1 \sigma_{cp}) bw d kNShear Resistance of Concrete without Shear LeRed Factor v1 = 0.6 (1 - (fck / 250))//ED max value at Support = 0.5 bw dJnreinforced Shear Resistance kNShear Shift Distance a1 = d mmNith Shear Legs Cl 6.2.3Asw / s mmz = 0.9d mm$	0.2fcd NED/AC סכף VRd,c Vmin VRd,cmin VRd,cmin VRd,cmin VRd,c V V fcd KN VED VC mm Asw/S z	4.00 0.00 290 0.39 210 290 0.528 2827 290 536 1.0472 481.95	4.00 0.00 122 0.43 101 122 0.528 1229 122 388 1.0472 349.2	20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378 1.0472 340.2	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390 0.7854 351	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359 0.7854 323.28	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6	20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75	20. 4.0 -1.3 -1.3 14 0.5 75 14 0.5 130 14 24 3.49 222.
0.2 x fod N/mm ² NED / Ac = Axial / Area of Section N/mm ² $\sigma_{cp} = Min of:- NED / Ac or 0.2 fod N/mm2 /Rd,c = (CRd,c k(100p1 fck)1/3 + k1 \sigma_{cp}) bw d k/min = 0.035 k 3/2 fok 1/2 N/mm2/Rd,c min = (Vmin + k1 \sigma_{cp}) bw d kNShear Resistance of Concrete without Shear LeRed Factor v1 = 0.6 (1 - (fck / 250))VED max value at Support = 0.5 bw dJnreinforced Shear Resistance kNShear Shift Distance a1 = d mmNith Shear Legs CI 6.2.3Asw / s mmz = 0.9d mmywd = fyk / ym N/mm2$	0.2fcd NED/AC حوب VRd,c Vmin VRd,cmin VRd,cmin VRd,cmin VRd,c V V fcd KN VED VC mm Asw/S z fywd	4.00 0.00 290 0.39 210 290 0.528 2827 290 536 1.0472 481.95 434.78	4.00 0.00 0.00 122 0.43 101 122 0.528 1229 122 388 1.0472 349.2 434.78	20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378 1.0472 340.2 434.78	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390 0.7854 351 434.78	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359 0.7854 323.28 434.78	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78	20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78	20. 4.0 -1.3 -1.3 14 0.55 130 14 24 3.49 222. 434.
0.2 x fod N/mm ² NED / Ac = Axial / Area of Section N/mm ² $\sigma_{cp} = Min of:- NED / Ac or 0.2 fod N/mm2 /Rd,c = (CRd,c k(100p1 fck)1/3 + k1 \sigma_{cp}) bw d k/rmin = 0.035 k 3/2 fok 1/2 N/mm2/Rd,c min = (Vmin + k1 \sigma_{cp}) bw d kNShear Resistance of Concrete without Shear LeRed Factor v1 = 0.6 (1 - (fck / 250))VED max value at Support = 0.5 bw dJnreinforced Shear Resistance kNShear Shift Distance a1 = d mmNith Shear Legs CI 6.2.3Asw / s mmz = 0.9d mmywd = fyk / ym N/mm2/rd,s = (Asw / s) Z fywd (cot \theta + cot \alpha) Sin \alpha$	kN VRd,cs kN vfcd kN VED kN vfcd kN vc kN vRd,cmin vRd,cmin vRd,cmin vRd,cmin vCRd,c v vFcd kN vCD vc mm Asw/s z fywd vRd,c v v vfcd kN vCD vc mm	4.00 0.00 290 0.39 210 290 0.528 2827 290 536 1.0472 481.95 434.78 548.62	4.00 0.00 122 0.43 101 122 0.528 1229 122 388 1.0472 349.2 434.78 397.51	20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378 1.0472 340.2 434.78 387.26	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390 0.7854 351 434.78 299.67	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359 0.7854 323.28 434.78 276	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 337.47	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 134.98	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 187.48	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 74.988	20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31	20. 4.0. -1.3 -1.3 14 0.55 130 14 24 3.49 2222 434. 590.
0.2 x fcd N/mm ² NED / Ac = Axial / Area of Section N/mm ² $\sigma_{cp} = Min of:- NED / Ac or 0.2 fcd N/mm2$ $/Rd,c = (CRd,c k(100p1 fck)^{1/3} + k1 \sigma_{cp}) bw d k$ $/min = 0.035 k^{3/2} f_{ck}^{1/2} N/mm^2$ $/Rd,c min = (vmin + k1 \sigma_{cp}) bw d kN$ Shear Resistance of Concrete without Shear Le Red Factor v1 = 0.6 (1 - (fck / 250)) VED max value at Support = 0.5 bw d Jnreinforced Shear Resistance kN Shear Shift Distance a1 = d mm Nith Shear Legs CI 6.2.3 Asw / s mm z = 0.9d mm $ywd = fyk / ym N/mm^2$ $/Rd,s = (Asw / s) Z fywd (cot \theta + cot \alpha) Sin \alpha\sigma_{cp} / fcd = (NED / Ac) / fcd or 0 If Tension$	N 0.2 fcd NED/AC σcp VRd,C Vmin VRd,cmin VRd,cmin VRd,C v VRd,C v VED VC mm Asw/S Z fywd VRd,s v vc,c	4.00 0.00 290 0.39 210 290 0.528 2827 290 536 1.0472 481.95 434.78 548.62 8E-05	4.00 0.00 122 0.43 101 122 0.528 1229 122 388 1.0472 349.2 434.78 397.51 0.0002	20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378 1.0472 340.2 434.78 387.26 0.0002	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390 0.7854 351 434.78 299.67 0.5079	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359 0.7854 323.28 434.78 276 0.4167	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 337.47 0.4167	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 134.98 0.4167	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 187.48 0.8333	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 74.988 0.8333	20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001	200 4.0. -1.3 -1.3 14 0.55 130 14 0.55 130 14 24 3.49 222 434. 590. 0
0.2 x fod N/mm ² NED / Ac = Axial / Area of Section N/mm ² $\sigma_{cp} = Min of:- NED / Ac or 0.2 fod N/mm2 / Rd,c = (CRd,c k(100p1 fok)1/3 + k1 \sigma_{cp}) bw d k/ Rd,c min = (Vmin + k1 \sigma_{cp}) bw d kNShear Resistance of Concrete without Shear LeRed Factor v1 = 0.6 (1 - (fok / 250))/ ED max value at Support = 0.5 bw dJnreinforced Shear Resistance kNShear Shift Distance a1 = d mmNith Shear Legs CI 6.2.3Asw / s mmz = 0.9d mmywd = fyk / ym N/mm2/ Rd,s = (Asw / s) Z fywd (cot \theta + cot \alpha) Sin \alpha\sigma_{cp} / fod = (NED / Ac) / fod or 0 If Tension\alpha_{cw} = 1 \text{ or } (1 + \sigma_{cp} / fod) \text{ or } 1.25 \text{ or } 2.5(1 - \sigma_{cp} / fod)$	0.2 fcd NED/AC σcp VRd,c Vmin VRd,cmin VRd,cmin <td>4.00 0.00 290 0.39 210 290 0.528 2827 290 536 1.0472 481.95 434.78 548.62 8E-05 1.0001</td> <td>4.00 0.00 122 0.43 101 122 0.528 1229 122 388 1.0472 349.2 434.78 397.51 0.0002 1.0002</td> <td>20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378 1.0472 340.2 434.78 387.26 0.0002 1.0002</td> <td>20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390 0.7854 351 434.78 299.67 0.5079 1.2302</td> <td>20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359 0.7854 323.28 434.78 276 0.4167 1.25</td> <td>20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 337.47 0.4167 1.25</td> <td>20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 134.98 0.4167 1.25</td> <td>20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 187.48 0.8333 0.4167</td> <td>20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 74.988 0.8333 0.4167</td> <td>20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001</td> <td>1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001</td> <td>20 4.C. -1.3 -1.3 14 0.5 -1.3 75 14 0.5 5 130 14 24 3.49 222 434 590 0 1</td>	4.00 0.00 290 0.39 210 290 0.528 2827 290 536 1.0472 481.95 434.78 548.62 8E-05 1.0001	4.00 0.00 122 0.43 101 122 0.528 1229 122 388 1.0472 349.2 434.78 397.51 0.0002 1.0002	20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378 1.0472 340.2 434.78 387.26 0.0002 1.0002	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390 0.7854 351 434.78 299.67 0.5079 1.2302	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359 0.7854 323.28 434.78 276 0.4167 1.25	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 337.47 0.4167 1.25	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 134.98 0.4167 1.25	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 187.48 0.8333 0.4167	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 74.988 0.8333 0.4167	20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001	20 4.C. -1.3 -1.3 14 0.5 -1.3 75 14 0.5 5 130 14 24 3.49 222 434 590 0 1
0.2 x fod N/mm ² NED / Ac = Axial / Area of Section N/mm ² $\sigma_{cp} = Min of:- NED / Ac or 0.2 fod N/mm2 / Rd,c = (CRd,c k(100p1 fok)1/3 + k1 \sigma_{cp}) bw d k/ min = 0.035 k 3/2 fok 1/2 N/mm2/ Rd,c min = (Vmin + k1 \sigma_{cp}) bw d kNShear Resistance of Concrete without Shear LeRed Factor v1 = 0.6 (1 - (fok / 250))/ ED max value at Support = 0.5 bw dJnreinforced Shear Resistance kNShear Shift Distance a1 = d mmNith Shear Legs CI 6.2.3Asw / s mmz = 0.9d mmywd = fyk / Ym N/mm2/ Rd,s = (Asw / s) Z fywd (cot \theta + cot \alpha) Sin \alpha\sigma_{cp} / fod = (NED / Ac) / fod or 0 If Tension\alpha_{cw} = 1 \text{ or } (1 + \sigma_{cp} / fod) \text{ or } 1.25 \text{ or } 2.5(1 - \sigma_{cp} / fod)$	0.2 fcd NED/AC σcp VRd,c Vmin VRd,cmin VRd,cmin <td>4.00 0.00 290 0.39 210 290 0.528 2827 290 536 1.0472 481.95 434.78 548.62 8E-05 1.0001 0.528</td> <td>4.00 0.00 122 0.43 101 122 0.528 1229 122 388 1.0472 349.2 434.78 397.51 0.0002 1.0002 0.528</td> <td>20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378 1.0472 340.2 434.78 387.26 0.0002 1.0002 0.528</td> <td>20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390 0.7854 351 434.78 299.67 0.5079 1.2302 0.528</td> <td>20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359 0.7854 323.28 434.78 276 0.4167 1.25 0.528</td> <td>20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 335.28 434.78 337.47 0.4167 1.25 0.528</td> <td>20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 134.98 0.4167 1.25 0.528</td> <td>20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 187.48 0.8333 0.4167 0.528</td> <td>20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 74.988 0.8333 0.4167 0.528</td> <td>20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001 0.528</td> <td>1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001 0.528</td> <td>20 4.C -1.: -1.: 14 0.5: 75 14 0.5: 130 14 24 3.49 222 434 590 0 1 0.5:</td>	4.00 0.00 290 0.39 210 290 0.528 2827 290 536 1.0472 481.95 434.78 548.62 8E-05 1.0001 0.528	4.00 0.00 122 0.43 101 122 0.528 1229 122 388 1.0472 349.2 434.78 397.51 0.0002 1.0002 0.528	20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378 1.0472 340.2 434.78 387.26 0.0002 1.0002 0.528	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390 0.7854 351 434.78 299.67 0.5079 1.2302 0.528	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359 0.7854 323.28 434.78 276 0.4167 1.25 0.528	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 335.28 434.78 337.47 0.4167 1.25 0.528	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 134.98 0.4167 1.25 0.528	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 187.48 0.8333 0.4167 0.528	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 74.988 0.8333 0.4167 0.528	20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001 0.528	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001 0.528	20 4.C -1.: -1.: 14 0.5: 75 14 0.5: 130 14 24 3.49 222 434 590 0 1 0.5:
D.2 x fod N/mm ² NED / Ac = Axial / Area of Section N/mm ² $\sigma_{cp} = Min of:- NED / Ac or 0.2 fod N/mm2$ $v_{Rd,c} = (C_{Rd,c} k(100 \rho 1 fok)^{1/3} + k1 \sigma_{cp}) bw d k$ $v_{min} = 0.035 k^{3/2} f_{ck}^{1/2} N/mm^{2}$ $v_{Rd,c} min = (v_{min} + k1 \sigma_{cp}) bw d kN$ Shear Resistance of Concrete without Shear Le Red Factor v1 = 0.6 (1 - (f_{ck} / 250)) VED max value at Support = 0.5 bw d Unreinforced Shear Resistance kN Shear Shift Distance a1 = d mm With Shear Legs CI 6.2.3 Asw / s mm z = 0.9d mm $y_{wd} = f_{yk} / y_m N/mm^2$ $v_{Rd,s} = (A_{sw} / s) Z f_{ywd} (cot \theta + cot \alpha) Sin \alpha\sigma_{cp} / f_{cd} = (NED / Ac) / f_{cd} or 0 If Tension\sigma_{cw} = 1 \text{ or } (1 + \sigma_{cp} / f_{cd}) \text{ or } 1.25 \text{ or } 2.5(1 - \sigma_{cp} / f_{cd})Red Factor = v1 = v x (1 - 0.5Cos\alpha)v_{Rd,max} = \alpha_{cw} bw z v1 f_{cd} (cot \theta+cot \alpha)/(1 + cot$	$\begin{array}{c} 0.2 \text{fcd} \\ \text{NED/AC} \\ \sigma_{Cp} \\ \forall \text{Rd,C} \\ \forall \text{Win} \\ \forall \text{Rd,Cmin} \\ \forall \text{Rd} \\ \sigma_{Cp}/\text{fcd} \\ \sigma_{Cw} \\ \forall 1 \\ \forall \text{Rd,max} \\ \forall \text{Rd,max} \\ \end{bmatrix}$	4.00 0.00 290 0.39 210 290 0.528 2827 290 536 1.0472 481.95 434.78 548.62 8E-05 1.0001 0.528 1755	4.00 0.00 122 0.43 101 122 0.528 1229 122 388 1.0472 349.2 434.78 397.51 0.0002 1.0002 0.528 763.04	20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378 1.0472 340.2 434.78 387.26 0.0002 1.0002 0.528 743.38	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390 0.7854 351 434.78 299.67 0.5079 1.2302 0.528 550.28	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359 0.7854 323.28 434.78 276 0.4167 1.25 0.528 882.84	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 335.28 434.78 337.47 0.4167 1.25 0.528 899.56	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 134.98 0.4167 1.25 0.528 1304.4	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 187.48 0.8333 0.4167 0.528 99.951	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 74.988 0.8333 0.4167 0.528 144.94	20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001 0.528 1504.2	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001 0.528 1504.2	20. 4.0 -1.3 -1.3 14 0.5 7 5 14 0.5 2 130 14 24 3.49 222 434. 590. 0 1 0.5 2 1014
0.2 x fod N/mm ² NED / Ac = Axial / Area of Section N/mm ² $\sigma_{cp} = Min of:- NED / Ac or 0.2 fod N/mm2$ $/Rd_{c} = (CRd_{c} k(100p1 fok)^{1/3} + k1 \sigma_{cp}) bw d k /min = 0.035 k 3/2 fok 1/2 N/mm2 /Rd_{c} min = (Vmin + k1 \sigma_{cp}) bw d kN Shear Resistance of Concrete without Shear Le Red Factor v1 = 0.6 (1 - (fok / 250)) VED max value at Support = 0.5 bw d Jnreinforced Shear Resistance kN Shear Shift Distance a1 = d mm Nith Shear Legs CI 6.2.3 Asw / s mm z = 0.9d mm ywd = fyk / ym N/mm2 /Rd_s = (Asw / s) Z fywd (cot \theta + cot \alpha) Sin \alpha\sigma_{cp} / fod = (NED / Ac) / fod or 0 If Tension\sigma_{cw} = 1 \text{ or } (1 + \sigma_{cp} / fod) \text{ or } 1.25 \text{ or } 2.5(1 - \sigma_{cp} / fod)Red Factor = v1 = v x (1 - 0.5Cos\alpha)/Rd_max = \alpha_{cw} bw z v1 fod (cot \theta+cot \alpha)/(1 + cotNith Shear Legs Resistance$	0.2fcd NED/AC σcp VRd,c Vmin VRd,cmin VC mm Asw/S Z fywd VRd,s σcp/fcd Gd) 2θ) VR	4.00 0.00 290 0.39 210 290 0.528 2827 290 536 1.0472 481.95 434.78 548.62 8E-05 1.0001 0.528 1755 548.62	4.00 0.00 122 0.43 101 122 0.528 1229 122 388 1.0472 349.2 434.78 397.51 0.0002 1.0002 0.528 763.04 397.51	20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378 1.0472 340.2 434.78 387.26 0.0002 1.0002 0.528 743.38 387.26	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390 0.7854 351 434.78 299.67 0.5079 1.2302 0.528 550.28 299.67	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359 0.7854 323.28 434.78 276 0.4167 1.25 0.528 882.84 276	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 337.47 0.4167 1.25 0.528 899.56 337.47	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 134.98 0.4167 1.25 0.528 1304.4 134.98	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 187.48 0.8333 0.4167 0.528 99.951	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 74.988 0.8333 0.4167 0.528 144.94 74.988	20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001 0.528 1504.2 432.31	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001 0.528 1504.2 432.31	20 4.C -1.: 14 0.5: 130 14 24 3.49 2222 434 590 0 1 0.5: 101- 590
0.2 x fod N/mm ² NED / Ac = Axial / Area of Section N/mm ² $\sigma_{cp} = Min of:- NED / Ac or 0.2 fod N/mm2 / Rd,c = (CRd,c k(100p1 fok)1/3 + k1 \sigma_{cp}) bw d k/ min = 0.035 k 3/2 fok 1/2 N/mm2/ Rd,c min = (Vmin + k1 \sigma_{cp}) bw d kNShear Resistance of Concrete without Shear LeRed Factor v1 = 0.6 (1 - (fok / 250))/ ED max value at Support = 0.5 bw dJnreinforced Shear Resistance kNShear Shift Distance a1 = d mmNith Shear Legs CI 6.2.3Asw / s mmz = 0.9d mmywd = fyk / Ym N/mm2/ Rd,s = (Asw / s) Z fywd (cot \theta + cot \alpha) Sin \alpha\sigma_{cp} / fod = (NED / Ac) / fod or 0 If Tension\alpha_{cw} = 1 \text{ or } (1 + \sigma_{cp} / fod) \text{ or } 1.25 \text{ or } 2.5(1 - \sigma_{cp} / fod)$	$\begin{array}{c} 0.2 \text{fcd} \\ \text{NED/AC} \\ \sigma_{Cp} \\ \forall \text{Rd,C} \\ \forall \text{Win} \\ \forall \text{Rd,Cmin} \\ \forall \text{Rd} \\ \sigma_{Cp}/\text{fcd} \\ \sigma_{Cw} \\ \forall 1 \\ \forall \text{Rd,max} \\ \forall \text{Rd,max} \\ \end{bmatrix}$	4.00 0.00 290 0.39 210 290 0.528 2827 290 536 1.0472 481.95 434.78 548.62 8E-05 1.0001 0.528 1755 548.62	4.00 0.00 122 0.43 101 122 0.528 1229 122 388 1.0472 349.2 434.78 397.51 0.0002 1.0002 0.528 763.04	20.0 4.00 0.00 184 0.44 99 184 0.528 1198 184 378 1.0472 340.2 434.78 387.26 0.0002 1.0002 0.528 743.38 387.26	20.0 4.00 10.16 4.00 140 0.43 141 141 0.528 721 141 390 0.7854 351 434.78 299.67 0.5079 1.2302 0.528 550.28 299.67	20.0 4.00 8.33 4.00 290 0.44 225 290 0.528 1138 290 359 0.7854 323.28 434.78 276 0.4167 1.25 0.528 882.84 276	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 337.47 0.4167 1.25 0.528 899.56 337.47	20.0 4.00 8.33 4.00 288 0.42 223 288 0.528 1159 288 439 0.7854 395.28 434.78 134.98 0.4167 1.25 0.528 1304.4	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 187.48 0.8333 0.4167 0.528 99.951	20.0 4.00 16.67 4.00 109 0.50 81 109 0.528 386 109 244 0.7854 219.6 434.78 74.988 0.8333 0.4167 0.528 144.94	20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001 0.528 1504.2 432.31	1.00 20.0 4.00 0.00 129 0.39 125 129 0.528 1671 129 528 2.0944 474.75 434.78 432.31 0.0001 1.0001 0.528 1504.2 432.31	20 4.C -1.: 14 0.5: 130 14 24 3.49 2222 434 590 0 1 0.5: 101- 590

	Punching Shear Y Y	IGN TO	DOL					H					
			PL	лсні	NG SH		метно	OD			How	ves Atkinsor	Crowder LL
				H	AC-PRO	1 - 5	- 2		PUNCH	1		Copyright ©	2009 HAC
Punching Shear	See S	heet 3	For Me	thod				EC2 l	Jlt Pur	nching	g Shea	ar Stress N	l/mm²
	Pu	nchina	Shear]	Witho	ut Leg	s vRI	D,c re	f Equ 6.47	
	i u	•	enour					= ≥	C _{RD,} c vmin +			<) ^ 1/3) + I	<1σср
	H	4						where	ρ1 is base σcp vmin	(ρx.ρy d on a = (σ = 0.03	y)^0.5 ≤ width o cy + σ 35 (k ^	f Col + 6D rcz) / 2 & I 3/2) (fck ^	(1 = 0.1 1/2)
×			F		x			θ is fix	ed at 2	6.6°	Cot θ	ref Equ 6 = 2	
	\checkmark		$\overline{\left\langle \cdot \right\rangle}$	• /	/				ed at 9 5 vRD	-	Sin α	= 1	otθ=2)d/s
	//		\					•••	,			u1 x d	<u> </u>
		Y						Asw fywd,e sr u1	= =	250 Prima	+ ry radia	oerimeter of 0.25d ≤ Il leg spacin neter at xd fr	g
						1		Pi = In Po = F				1.1	
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD	eter Uout layed, nc r as a Sc max =	is shov legs ar juare or 0.5 (0	vn in Bl re requ r Circle).6 (1 - 1	ired. fck /25	out > U Cin 0))1.0 fr β or	r cle ck / 1.5	M Pe	Pe = E Pc = C Pr = R	dge orner e-entra	Perim	uU1 dist	1.4 1.5 1.3 t = 2.0	0 1.40 0 1.25 0 1.30 D 1.5D
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B D φ1	eter Uout layed, no r as a Sc max = Ctrs	is show legs ar juare or 0.5 (0 Cov	vn in Bl re requ r Circle).6 (1 - 1	ired. fck /25	out > U Cin 0))1.0 fr β or MEDX	rcle	_	Pe = E Pc = C Pr = R Basic	dge orner e-entra Control		1 U1 dist fywd 385	1.4 1.5 _1.3	0 1.40 0 1.25 0 1.30 D 1.5D
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B D φ1 600 1000 540 20 Type φ Leg Sr	eter Uout layed, nc r as a Sc max = Ctrs 150 Start	is show legs ar juare or 0.5 (0 Cov 50 Nr	vn in Bl re requ r Circle 0.6 (1 - τ φΕ Nra	lue if U ired. fck /25 Fact	out > U Cin 0))1.0 fr β or MEDX Def Y	rcle ck / 1.5 <u>MedY</u>	Pe	Pe = E Pc = C Pr = R Basic N r B	dge corner e-entra Control Des	Perim fyk 500 VED	fywd 385 udl	1.4 1.5 1.3 t = 2.0 <u>fck / fcu</u> <u>30 37</u> β V k	0 1.40 0 1.25 0 1.30 D 1.5D
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B D φ1 600 1000 540 20 Type φ Leg Sr Pi 20 40	eter Uout layed, nc r as a Sc max = Ctrs 150 Start	is show legs ar juare or 0.5 (0 Cov 50 Nr 12	vn in Bl re requ r Circle).6 (1 - ⁻ φE Nra 12	ue if U ired. fck /250 Fact X 600	out > U Cin 0))1.0 fr β or MEDX Def Y 600	rcle ck / 1.5 MEDY N/A Sect Slab	Pe 140 F1 Top	Pe = E Pc = C Pr = R Basic N r B 0 FOS 1.35	idge iorner e-entra Control Des U Vratio 0	Perim fyk 500 VED 3750	fywd 385 udl 0	1.4 1.5 1.3 t = 2.0 fck / fcu 30 37 β V k 1.150 431	0 1.40 0 1.25 0 1.30 D 1.5D ' EC2 N xD 3 2.000
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B D φ1 600 1000 540 20 Type φ Leg Sr Pi 20 40 Ult Stress Capacity CRD,c	eter Uout layed, nc r as a Sc max = Ctrs Ctrs Start 5 270	is show legs an juare or 0.5 (0 Cov 50 Nr 12 vRD,c 0.120	vn in Bl re requ r Circle 0.6 (1 - 1 φE Nra 12 As1 / I As pei	lue if U ired. fck /250 Fact X 600 B - Leg m	out > U Cin D))1.0 fr β or MEDX Def Y 600 mm ² mm ²	rcle ck / 1.5 MEDY N/A Sect	Pe 140 F1 Top	Pe = E Pc = C Pr = R Basic N r B 0 FOS 1.35 vRD,s 314	dge corner e-entra Control Des U Vratio 0 Vca vR	Perim fyk 500 VED 3750 ap at F D at F	fywd 385 udl 0 face Ult ace Ult	1.4 1.5 1.3 t = 2.0 <u>fck / fcu</u> <u>30</u> 37 <u>β V k</u> 1.150 431 684 5.1	0 1.40 0 1.25 0 1.30 D 1.5D 7 EC2 N xD 3 2.000 43 kN 28 N/mm ²
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B D φ1 600 1000 540 20 Type φ Leg Sr Pi 20 40 Ult Stress Capacity CRD,c k = Min (2, (1+200/d)^0.5 (p1fck)1/3	eter Uout layed, nc r as a Sc max = Ctrs Ctrs Start 5 270	is show legs an juare or 0.5 (0 Cov 50 Nr 12 vRD,c 0.120 1.609 2.266	vn in Bl re requ r Circle 0.6 (1 - 1 φE Nra 12 Ast1/I As per Asw p Sr mm	lue if U ired. fck /25 Fact X 600 B C Leg m er Ux r	out > U Cin D))1.0 fr β or MEDX Def Y 600 mm ² mm ²	rcle ck / 1.5 MEDY N/A Sect Slab	Pe 140 F1 Top	Pe = E Pc = C Pr = R Basic N r B 0 FOS 1.35 VRD,s 314 3770 405	idge iorner e-entra Control Des U Vratio 0 Vca vR vE	Perim fyk 500 VED 3750 ap at F D at F D at F D at F	fywd 385 udl 0 ace Ult ace Ult ace Ult	$f = \frac{1.4}{2.0}$ $f = \frac{fck / fcu}{30 - 37}$ $\beta - V k$ $1.150 - 431$ 684 5.3	0 1.40 0 1.25 0 1.30 D 1.5D 7 EC2 N xD 3 2.000 43 kN 28 N/mm ² Main Sh
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B φ1 600 1000 540 20 Type φ Leg Sr Pi 20 40 Ult Stress Capacity CRD,c k Min (2, (1+200/d)^0.5 (p1fck)1/3 k1σcp = 100Nu / H B vmin + k1σcp	eter Uout layed, nc r as a Sc max = Ctrs Ctrs Start 5 270	is show legs an juare or 0.5 (0 Cov 50 Nr 12 VRD,c 0.120 1.609 2.266 0.000 0.280	vn in Bl re requ r Circle 0.6 (1 - 1 φE Nra 12 Asy per Asw p Sr mm U mm 2 Asw	r Leg m fywd,e	out > U Cit 0))1.0 fr β or MEDX Def Y 600 mm ² nm ² nm ² sf / (Sr U	rcle ck / 1.5 MeDY N/A Sect Slab 2094	Pe 140 F1 Top	Pe = E Pc = C Pr = R Basic n r B 0 FOS 1.35 vRD,s 314 3770 405 9186 0.780	dge corner e-entra Control Des U Vratio 0 Vca vR vE	Perim fyk 500 VED 3750 ap at F D at F D at F D at F D at F Uvc Ca U1 Ca	fywd 385 udl 0 face Ult face Ult face Ult face Ult p Ratio p Ratio	$f = \frac{1.4}{2.0}$ $f = \frac{fck / fcu}{30 - 37}$ $\frac{\beta - V k}{1.150 - 431}$ $68.$ 5.3 3.3 0.4 0.4	0 1.40 0 1.25 0 1.30 D 1.5D 7 EC2 N xD 3 2.000 43 kN 28 N/mm ² Main Sho 99 Displaye
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B φ1 600 1000 540 20 Type φ Leg Sr Pi 20 40 Ult Stress Capacity CRD,c k Min (2, (1+200/d)^0.5 (p1fck)1/3 k1σcp 100Nu / H B vmin + k1σcp vRD,c	eter Uout layed, no r as a Sco max = Ctrs 150 Start 5 270	is shov legs an juare or 0.5 (0 Cov 50 Nr 12 vRD,c 0.120 1.609 2.266 0.000 0.280 0.438	vn in Bl re requ r Circle 0.6 (1 - 1 φE Nra 12 Asy per Asw p Sr mm U mm 2 Asw	r Leg m fywd,e	out > U Cit 0))1.0 fr β or MEDX Def Y 600 mm ² nm ² nm ² sf / (Sr U	rcle ck / 1.5 MEDY N/A Sect Slab 2094 Jx) r Ux)	Pe 140 F1 Top 0.75	Pe = E Pc = C Pr = R Basic n r B 0 FOS 1.35 VRD,s 314 3770 405 9186 0.780 0.585	dge orner e-entra Control Des U Vratio 0 Vca vR vE	Perim fyk 500 VED 3750 ap at F D at F D at F D at F D at F D at Ca U Ca U Ca	fywd 385 udl ace Ult ace Ult ace Ult ace Ult p Ratio p Ratio p Ratio	$f = \frac{1.4}{2.0}$ $f = \frac{fck / fcu}{30 - 37}$ $\beta - V k$ $1.150 - 431$ 688 5.3 3.4 0.4 0.4 0.4	0 1.40 0 1.25 0 1.30 D 1.5D 7 EC2 N xD 3 2.000 43 kN 28 N/mm ² Main Sho 99 Displaye
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B p 600 1000 540 20 Type φ Leg Sr Pi 20 40 Ult Stress Capacity CRD,c k k = Min (2, (1+200/d)^0.5 (ρ1fck)1/3 k1σcp = 100Nu / H B vmin + k1σcp vRD,c VRD,c Ult EC2 Concrete Stress Ult EC2 Concrete Stress	Capacity Capacity Capacity	is shov legs an juare or 0.5 (0 Cov 50 Nr 12 VRD,c 0.120 1.609 2.266 0.000 0.280 0.438	vn in Bl re requ r Circle 0.6 (1 - 1 φE Nra 12 Asy per Asw p Sr mm 2 Asw 1.5 As 1.5 As	ired. ired. fck /25 Fact X 600 3 - Leg m er Ux r 1 fywd,e w fywc 0.75	out > U Cil 0))1.0 fr β or MEDX Def Y 600 mm ² mm ² mm ² nm ² f / (Sr U I,ef / (S	rcle ck / 1.5 MEDY N/A Sect Slab 2094 Jx) r Ux)	Pe 140 F1 0.75 0.75	Pe = E Pc = C Pr = R Basic n r B 0 FOS 1.35 VRD,s 314 3770 405 9186 0.780 0.585	dge orner e-entra Control Des U Vratio 0 Vca vR vE	Perim fyk 500 VED 3750 ap at F D at F D at F D at F D at F U ca U Ca U Ca U Ca	fywd 385 udl 0 face Ult face Ult face Ult face Ult p Ratio p Ratio	$f = \frac{1.4}{2.0}$ $f = \frac{fck / fcu}{30 - 37}$ $\beta V k$ $1.150 - 431$ 686 5.3 3.3 0.9 0.3 0.3 0.3 0.3 0.3	0 1.40 0 1.25 0 1.30 D 1.5D 7 EC2 N xD 3 2.000 43 kN 28 N/mm ² Main Sho 99 Displaye
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B D $\phi 1$ 600 1000 540 20 Type ϕ Leg Sr Pi 20 40 Ult Stress Capacity CRD,c k = Min (2, (1+200/d)^0.5 (p1fck)1/3 k1 σ cp = 100Nu / H B vmin + k1 σ cp vRD,c Ult EC2 Concrete Stress Ult EC2 Concrete Stress	eter Uout layed, no r as a Sc max = Ctrs 150 Start 5 270 Capacity Capacity ress Cap	is shov legs ar juare or 0.5 (0 Cov 50 Nr 12 vRD,c 0.120 1.609 2.266 0.0280 0.280 0.438 - Limit a at xD =	vn in Bl re requ r Circle 0.6 (1 - 1 φE Nra 12 Asw p Sr mr U mm 2 Asw p Sr mr U mm 2 Asw 1.5 As t 2D t 2D	lue if U ired. fck /25 Fact X 600 B C Leg m er Ux r 1 fywd,e w fywc 0.75 s 0	out > U Cin D))1.0 fn β or MEDX Def Y 600 mm ² mm ² mm ² f / (Sr U I,ef / (Sr U Using =	rcle ck / 1.5 MedY N/A Sect Slab 2094 Jx) r Ux) (If xI	Pe 140 F1 Top 0.75 0.75	Pe = E Pc = C Pr = R Basic (n r B 0 FOS 1.35 vRD,s 314 3770 405 9186 0.780 0.585 , 2D / x	dge orner e-entra Control Des U Vratio 0 Vca vR vE U ² D else 0.328 x	Perim fyk 500 VED 3750 ap at F D at F D at F D at F IVC Ca U1 Ca U1 Ca U1 Ca 1.0) x + 540	fywd 385 udl cace Ult cace Ult cace Ult cace Ult p Ratio p Ratio p Ratio p Ratio p Ratio vRD,c 2vRD,c 0.585)	1.4 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.150	0 1.40 0 1.25 0 1.30 D 1.5D 7 EC2 N xD 3 2.000 43 kN 28 N/mm ² Main Sh 99 Displaye 99 28 N/mm ² 13 N/mm ² 13 N/mm ² 13 N/mm ²
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B D $\phi 1$ 600 1000 540 20 Type ϕ Leg Sr Pi 20 409 Ult Stress Capacity CRD,c k = Min (2, (1+200/d)^0.5 (p1fck)1/3 k1 σ cp = 100Nu / H B vmin + k1 σ cp vRD,c UIt EC2 Concrete Stress UIt EC2 Concrete Stress	eter Uout layed, no r as a Sc max = Ctrs 150 Start 5 270 Capacity Capacity ress Cap	is shov legs an juare or 0.5 (0 Cov 50 Nr 12 vRD,c 0.120 1.609 2.266 0.000 0.280 0.438 7 Limit a at xD = 4313	vn in Bl re requ r Circle 0.6 (1 - 1 φE Nra 12 Asy per Asw p Sr mm 2 Asw 1.5 As t 2D t 2D t 2D t 2d00	ue if U ired. fck /25 Fact X 600 B - Leg m er Ux r 1 fywd,e w fywc 0.75 s 0 + ((out > U Cil 0))1.0 fr β or MEDX Def Y 600 mm ² mm ² mm ² mm ² f / (Sr U I,ef / (S x Using = 2.0	rcle ck / 1.5 MEDY N/A Sect Slab 2094 Jx) r Ux) (If xI equatic	Pe 140 F1 Top 0.75 0.75	Pe = E Pc = C Pr = R Basic (n 7 8 0 FOS 1.35 vRD,s 314 3770 405 9186 0.780 0.585 , 2D / x	dge orner e-entra Control U Vratio 0 Vca VCa VCa U U D else 0.328	Perim fyk 500 VED 3750 ap at F D at F D at F D at F IVc Ca U1 Ca U1 Ca U1 Ca 1.0) x +	fywd 385 udl ace Ult ace Ult ace Ult p Ratio p Ratio p Ratio p Ratio vRD,c 2vRD,c 0.585	1.4 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.150	0 1.40 0 1.25 0 1.30 D 1.5D 7 EC2 N xD 3 2.000 43 kN 28 N/mm ² 33 N/mm ² 99 99 28 N/mm ² 75 N/mm ² 13 N/mm ²
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B D $\phi 1$ 600 1000 540 20 Type ϕ Leg Sr Pi 20 40 Ult Stress Capacity CRD,c k = Min (2, (1+200/d)^0.5 (p1fck)1/3 k1 σ cp = 100Nu / H B vmin + k1 σ cp vRD,c Ult EC2 Concrete Stress Ult EC2 Concrete Stress	eter Uout layed, no r as a Sc max = Ctrs 150 Start 5 270 Capacity Capacity ress Cap 0 x (neter eter at xl	is shov legs an juare or 0.5 (0 Cov 50 Nr 12 vRD,c 0.120 1.609 2.266 0.000 0.280 0.438 7 Limit a at xD = 4313	vn in Bl re requ r Circle 0.6 (1 - 1 φE Nra 12 Asy per Asw p Sr mm 2 Asw 1.5 As t 2D s vRD,c 2400 2400	ue if U ired. fck /25 Fact X 600 B C Leg m er Ux r 1 fywd,e w fywc 0.75 s 0 + ((+ ((out > U Cil 0))1.0 fr β or MEDX Def Y 600 mm ² mm ² mm ² mm ² f / (Sr U I,ef / (S Using = 2.0 2.0	rcle ck / 1.5 MEDY N/A Sect Slab 2094 Jx) r Ux) (If xl equatic 4313 x	Pe 140 F1 Top 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75	Pe = E Pc = C Pr = R Basic (n 7 8 0 FOS 1.35 vRD,s 314 3770 405 9186 0.780 0.585 , 2D / x 0.438) x	dge orner e-entra Control Des U Vratio 0 Vca vR vE U ² D else 0.328 x 540	Perim fyk 500 VED 3750 ap at F D at F D at F D at F IVc Ca U Ca U Ca 1.0) x + 540) x	fywd 385 udl ace Ult ace Ult ace Ult p Ratio p Ratio p Ratio p Ratio vRD,c 2vRD,c 0.585) 2.00 2.00	1.4 1.5 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.150	0 1.40 0 1.25 0 1.30 D 1.5D 7 EC2 N xD 3 2.000 43 kN 28 N/mm ² Main Sh 9 Displaye 99 99 28 N/mm ² 13 N/mm ² 13 N/mm ² 13 N/mm ² 13 N/mm ²
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B D $\phi 1$ 600 1000 540 20 Type ϕ Leg Sr Pi 20 40 UIT Stress Capacity CRD,c k = Min (2, (1+200/d)^0.5 (p1fck)1/3 k1 σ cp = 100Nu / H B vmin + k1 σ cp vRD,c UIT EC2 Concrete Stress UIT EC2 Concrete Stress	Capacity Capacity	is show legs an juare or 0.5 (0 Cov 50 Nr 12 vRD,c 0.120 1.609 2.266 0.000 0.280 0.438 7 Limit a at xD = 4313 0 or if of equa	vn in Bl re requ r Circle 0.6 (1 - 1 φE Nra 12 Asy p Sr mr U mm 2 Asw p Sr mr U mm 2 Asw 1.5 As t 2D v RD,c 2400 2400 2400 no legs ations o	ue if U ired. fck /25 Fact X 600 3 C Leg m er Ux r 1 fywd,e w fywc 0.75 cs 0 + ((+ ((out > U Cil 0))1.0 fr β or MEDX Def Y 600 mm ² mm ² mm ² nm ² f / (Sr U l,ef / (S Using = 2.0 2.0 2.0 5,0,0 (or 1)	rcle ck / 1.5 MEDY N/A Sect Slab 2094 Jx) r Ux) (If xI equatic 4313 x x vRD,c i	Pe 140 F1 Top 0.75	Pe = E Pc = C Pr = R Basic (n FOS 1.35 VRD,s 314 3770 405 9186 0.780 0.585 , 2D / x 0.438) x) x	dge orner e-entra Control U Vratio 0 Vca vR vE U ² D else 0.328 x 540 540	Perim fyk 500 VED 3750 ap at F D at F D at F D at F IVc Ca U Ca U Ca 1.0) x + 540) x) x	fywd 385 udl cace Ult cace Ult cace Ult cace Ult p Ratio p Ratio p Ratio p Ratio p Ratio vRD,c 2vRD,c 2vRD,c 0.585) 2.00	1.4 1.5 1.3 fck / fcu 30 37 β V k 1.150 431 68 5.3 3.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.4 0.5 0.3 0.4 0.3 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.6 0.7 0.8 0.9 1823 913 433 434	0 1.40 0 1.25 0 1.30 D 1.5D 7 EC2 N xD 3 2.000 43 kN 28 N/mm ² Main Sho 99 99 28 N/mm ² 13 N/mm ² 13 N/mm ² 13 N/mm ² 13 N/mm ² 13 N/mm ² 13 N/mm ²
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B D $\phi 1$ 600 1000 540 20 Type ϕ Leg Sr Pi 20 40 UIT Stress Capacity CRD,c k = Min (2, (1+200/d)^0.5 (p1fck)1/3 k1 σ cp = 100Nu / H B vmin + k1 σ cp vRD,c UIT EC2 Concrete Stress UIT EC2 Concrete	eter Uout layed, nor r as a Score max = Ctrs Ctrs Start 5 270 Capacity Capacity Capacity ress Cap 0 x (neter eter at xl con Min con Min con Min ton Min ton Min ton Start to Start	is show legs an juare or 0.5 (0 Cov 50 Nr 12 vRD,c 0.120 1.609 2.266 0.000 0.280 0.438 7 Limit a at xD = 4313 0 or if of equa of equa of equa of equa of assic C of Mair	vn in Bl re requ r Circle 0.6 (1 - 1 φE Nra 12 Asy p Sr mr U mm 2 Asw p Sr mr U mm 2 Asw 1.5 As t 2D vRD,c 2400 2400 control n Radia	ue if U ired. fck /250 Fact X 600 3 - Leg m er Ux r 1 fywd,e w fywc 0.75 :s 0 + (((+ ((: vRD,co or 2vRD - 2vRD) / (Perime als	out > U Cil 0))1.0 fr β or MEDX Def Y 600 mm ² mm ² mm ² of / (Sr U l,ef / (Sr U	rcle ck / 1.5 MEDY N/A Sect Slab 2094 Jx) r Ux) (If xl equatic 4313 x x vRD,c if ,RD,c if	Pe 140 F1 Top 0.75	Pe = E Pc = C Pr = R Basic n r B 0 FOS 1.35 vRD,s 314 3770 405 9186 0.780 0.585 9186 0.780 0.585 , 2D / x 0.438) x) x 0.438) x) x 1 x	dge orner e-entra Control Des U Vratio 0 Vca VR VE U' D else 0.328 x 540 540 540 540	Perim fyk 500 VED 3750 ap at F D at F D at F D at F IVC Ca U Ca U Ca 1.0) x + 540) x) x Uvc U1	fywd 385 udl 0 ace Ult ace Ult p Ratio p Ratio p Ratio p Ratio p Ratio p Ratio p Cap Cap	$\begin{array}{c} 1.4\\ 1.5\\ 1.3\\ 1.5\\ 1.3\\ 1.5\\ 1.3\\ 1.5\\ 1.3\\ 1.3\\ 0.3\\ 1.150\\ 1.1$	0 1.40 0 1.25 0 1.30 D 1.5D 7 EC2 N xD 3 2.000 43 kN 28 N/mm ² 33 N/mm ² 43 kN 28 N/mm ² 50 Displaye 59 50 Displaye 50 Displaye 50 Mm ² 51 mm 56 mm 51 mm 56 mm 51 kN 51 mm 56 mm 51 mm 56 mm 51 mm 56 mm 57 mm 50 mm
No Legs Capacity Perime Note:- If Uout is not disp BS Circular Col Perimete At Supp Face vRD H B D $\phi 1$ 600 1000 540 20 Type ϕ Leg Sr Pi 20 40 UIT Stress Capacity CRD,c k = Min (2, (1+200/d)^0.5 (p1fck)1/3 k1 σ cp = 100Nu / H B vmin + k1 σ cp vRD,c UIT EC2 Concrete Stress UIT EC2 Concrete	eter Uout layed, nor r as a Score max = Ctrs Start 5 270 Capacity Capacity Capacity ress Cap 0 x (neter eter at xl con Min con Min con Min ton Min ton Min ton Start to Start to Start	is show legs an juare or 0.5 (0 Cov 50 Nr 12 vRD,c 0.120 1.609 2.266 0.000 0.280 0.438 7 Limit a at xD = 4313 0 or if of equa of equa of equa of equa of assic C of Mair of Add	vn in Bl re requ r Circle 0.6 (1 - 1 φE Nra 12 Asy p Sr mr U mm 2 Asw p Sr mr U mm 2 Asw 1.5 As t 2D vRD,c 2400 2400 control n Radia itional I	ue if U ired. ired. fck /250 Fact X 600 3 - Leg m er Ux r 1 fywd,e w fywc 0.75 cs 0 + (((+ (() cvRD,co cor 2vRD) / () Perime als Radials	out > U Cil 0))1.0 ff β or MEDX Def Y 600 mm ² mm ² mm ² of / (Sr U l,ef / (S Using = 2.0 2.0 2.0 c),c (or v 2.0 eter 5 Dri	rcle ck / 1.5 MEDY N/A Sect Slab 2094 Jx) r Ux) (If xI equatic 4313 x x vRD,c if ,RD,c if x	Pe 140 F1 Top 0.75	Pe = E Pc = C Pr = R Basic n r B 0 FOS 1.35 vRD,s 314 3770 405 9186 0.780 0.585 9186 0.780 0.585 , 2D / x 0.438) x) x 0.438) x) x 1.35 () 1.35 () 1.35	dge orner e-entra Control Des U Vratio 0 Vca VR VE U ² D else 0.328 x 540 540 540 540	Perim fyk 500 VED 3750 ap at F D at F D at F Ivc Ca U Ca U Ca 1.0) x + 540) x) x Uvc U1 U U U U U U U U U U U U U	fywd 385 udl 0 ace Ult ace Ult p Ratio p Ratio p Ratio p Ratio p Ratio p Ratio p Cap Cap	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1.40 0 1.25 0 1.30 D 1.5D 7 EC2 N xD 3 2.000 43 kN 28 N/mm ² 33 N/mm ² 43 kN 28 N/mm ² 50 Displaye 59 50 Displaye 50 Mm ² 51 mm 56 mm 51 mm 56 mm 51 kN 51 kN 51 mm 56 mm 51 kN 51 mm 56 mm 51 mm 56 mm 56 mm 56 mm 56 mm 57 mm 50 mm

				E	C2 DESI	GN TO	OL				H A	C
				PUNCH	ING SH	EAR M	IETHO	DD		Howe	es Atkinson C	row
					HAC-PRO	1 - 5 -	2	PUNCH	2	(Copyright © 20	09 H
Colou	latio	o of 0 Volu							- 1			
		n of β Valu										
			the columns on the columns of the columns of the take account of take acco						around	the sup	port will	
Defaul	t value	es are show	n adjacent for t	he general		Pi = Inte	ernal			EC2 1.15	BS 1.15	
flat slal	b case	e where the	spans are near	ly equal.	I	Pe = Ec	lge			1.4	1.4	
		xact method ng the defau	gives very low	β values,		Pc = Cc Pr = Re	-	nt (suggested))	1.5 1.3	1.25 1.3	
Where	the s	pans are not	even or the ar n Moment / Sh		irregular, t	the β Va	alue de	epends on the	Shear	Eccentri	-	
			tive depths fro								D (EC2).	
β due t	to ME	Dxx or MED	yy or both	Pi N/	A I	Pr	N/A	Pe	N/A	F	Pc N/A	
BS811	0 Re	f CI 3.7.6.2	x = Col Dim	ı + (xD)d(2 if P	9i, 1.5 if Pr	r or 1 if l	Pe)	X - X		Y - [*]	Y	
Pi		β = Max	cof(1 + 1.5(Mt/Vt)/xa	hout each	n avis	г	x β 2220 N/A		x 2220	<u>β</u> N/A	<u>م</u>
Pr		β = Max	of (1.25 + 1	.5 (Mt / Vt) / >	x about e	ach axis	s	1815 N/A		1815	N/A	N/
Pe Pc		•	cof1.25 & 1. 5 Vt	25 + 1.5 (Mtx	x / Vt) / x			1410 N/A			N/A	N/ N/
	D.4 .01	•					L					
EC2 R	-				c1	c2	k	Med / Ved	u		W1	ß
Pi = I Fig 6.1		al		Mxx Myy	600 600		0.60 0.60	N/A N/A	91) 91)		8537352 8537352	N/ N/
		e to axis of l	pending	Bi - Axial		600			010			N/
Pr = F	Re-en	trant		Mxx	c1 600	c2 600	k 0.60	Med / Ved N/A	u 74		W1 6802014	<u>م</u> /N
				Myy	600	600	0.60	N/A	74		6802014	N/
C1 & C2	2 relat	e to axis of l	bending	Bi - Axial	600	600						N/
k	=	Depends c	n c1 / c2 ratio		c1 / c2 K		< =0.5 0.45	1 0.6		2 0.7	> =3 0.8	
β	=	1 + k (Me	d / Ved) x (u1 /	W1)								
W1	=		/ 2 + c1c2 + (2 / 3 + c1c2 + (2					c1	This all	lows the	alue at u1 β Value at s	
			0.6 π (Med / \	/ed) / (Dia + ((2)(xD)d)						uding 0 for co ceed 2.0	ol fac
β Circ	=	Pi 1+							VD IIIU			
	=		0.6 π (Med / V		(1.5)(xD)d	1)						
		Pr 1+		/ED) / (Dia + (If circ			set c2 =	c1	
β Circ		Pr 1 + EC2 states Pi 1 +	0.6 π (Med / that formula a 1.8 (((Medx)	/ED) / (Dia + (pplies to a rec (/ VED) / (c1 +	tangular c 2(xD)d)) [/]	column, ^2 + ()	(Medy)	ular, conserva y / V _{ED}) / (c2 +	tively, s 2(xD)d	l))^2) ^	0.5	
βCirc If Bi-Ax	xial	Pr 1 + EC2 states Pi 1 +	$0.6 \pi (M_{ED} / M_{eD})$ that formula a	/ED) / (Dia + (pplies to a rec (/ VED) / (c1 +	tangular c 2(xD)d)) [/]	column, ^2 + ()	(Medy)	ular, conserva y / V _{ED}) / (c2 +	tively, s 2(xD)d	l))^2) ^	0.5	
β Circ If Bi-Aλ β	xial =	Pr 1 + EC2 states Pi 1 + Pr 1 +	0.6 π (Med / that formula a 1.8 (((Medx)	/ED) / (Dia + (pplies to a rec (/ VED) / (C1 + (/ VED) / (C1 +	tangular c 2(xD)d))′ 1.5(xD)d) c1	column, ^2 + (())^2 + c2	(Medy) ((Med k	ular, conserva y / Ved) / (c2 + yyy / Ved) / (c2 Med / Ved	tively, s 2(xD)d + 1.5(x u	l))^2)^ (D)d))^2 1	• 0.5 2)^ 0.5 W1	j
β Circ If Bi-Aλ β Pe =	kial = Edge	Pr 1 + EC2 states Pi 1 + Pr 1 +	0.6 π (Med / that formula a 1.8 (((Medx)	VeD) / (Dia + (pplies to a rec (/ VeD) / (c1 + (/ VeD) / (c1 + (/ VeD) / (c1 +	tangular c 2(xD)d))′ 1.5(xD)d) c1 600	column, ^2 + (1))^2 + <u>c2</u> 600	(Medy) ((Med	ular, conserva y / Ved) / (c2 + yyy / Ved) / (c2	tively, s 2(xD)d + 1.5(x 	l))^2) ^ ‹D)d))^2 <mark>1</mark> 93	0.5 2)^ 0.5	N/
β Circ If Bi-Aλ β	kial = Edge 20 a	Pr 1 + EC2 states Pi 1 + Pr 1 +	0.6 π (Med / that formula a 1.8 (((Medx)	/ED) / (Dia + (pplies to a rec (/ VED) / (C1 + (/ VED) / (C1 +	tangular c 2(xD)d))′ 1.5(xD)d) c1 600 600	column, ^2 + (())^2 + c2	(Medyy ((Med <u>k</u> 0.70	ular, conserva y / Ved) / (c2 + yyy / Ved) / (c2 Med / Ved	tively, s 2(xD)d + 1.5(x <u>u</u> 511 511	l))^2) ^ ‹D)d))^2 1 93 93	0.5 2)^0.5 W1 5096676	
β Circ If Bi-Aλ β Pe = Fig 6.2	kial = Edge 20 a	Pr 1 + EC2 states Pi 1 + Pr 1 +	0.6 π (Med / that formula a 1.8 (((Medx)	VeD) / (Dia + (pplies to a rec (/ VeD) / (c1 + (/ VeD) / (c1 + (/ VeD) / (c1 + Mxx Myy Bi - Axial	etangular o 2(xD)d)) [/] 1.5(xD)d) c1 600 600	column, ^2 + (1)))^2 + <u>c2</u> 600 600 =	(Medy) ((Med k 0.70 Cc	ular, conserva y / Ved) / (c2 + yyy / Ved) / (c2 <u>Med / Ved</u> N/A onstant Myy pa	tively, s 2(xD)d + 1.5(x 519 519 519 519 519	l))^2) ^ (D)d))^2 1 93 93 Mxx part	0.5 2)^0.5 W1 5096676	N/ N/
β Circ If Bi-A× β Pe = 1 Fig 6.2 c1 & c2 k	xial = Edge 20 a 2 are f	Pr 1 + EC2 states Pi 1 + Pr 1 + fixed Depends c	0.6 π (MeD / that formula a 1.8 (((MeDx) 1.8 (((MeDx)	/eo) / (Dia + (pplies to a rec (/ Veo) / (c1 + (/ Veo) / (c1 + Mxx Myy Bi - Axial where c1 = 0.5	etangular o 2(xD)d)) [/] 1.5(xD)d) c1 600 600 5 x actual	column, $^{2} + (1)^{2} + (1)^{2} + \frac{c2}{600}$ $\frac{600}{600} = \frac{c2}{c2}$ to give	(Medy) ((Med k 0.70 <u>Cc</u> 2c2 / c	ular, conserva y / Ved) / (c2 + yyy / Ved) / (c2 <u>Med / Ved</u> N/A onstant Myy pa c1 (not c1 / 2c)	tively, s 2(xD)d + 1.5(x 511 511 511 512 512 512 512 512 512 512	l))^2) ^ (D)d))^2 1 93 93 Mxx part EC2)	0.5 2)^0.5 W1 5096676	N/ N/
β Circ If Bi-A× β Pe = 1 Fig 6.2 c1 & c2 k β	xial = Edge 20 a 2 are f =	Pr 1 + EC2 states Pi 1 + Pr 1 + fixed Depends c Myy part (<i>i</i>	0.6 π (MeD / that formula a 1.8 (((MeDx) 1.8 (((MeDx) 1.8 ((MeDx) n c2 / c1 ratio	VeD) / (Dia + (pplies to a rec (/ VeD) / (c1 + (/ VeD) / (c1 + Mxx Myy Bi - Axial where c1 = 0.5 t) + Mxx part -	etangular o 2(xD)d))' 1.5(xD)d) c1 600 600 5 x actual 1 =	column, $^{2} + (1)^{2} + (1)^{2} + \frac{c2}{600}$ $\frac{600}{600} = \frac{c2}{c2}$ to give $u1 / u1^{2}$	(Medy) ((Med k 0.70 <u>Cc</u> 2c2 / c * + +	ular, conserva y / Ved) / (c2 + yyy / Ved) / (c2 <u>Med / Ved</u> N/A onstant Myy pa c1 (not c1 / 2c2 < (Medyy / Ved)	tively, s 2(xD)d + 1.5(x 511 511 511 511 2 as in 2 as in) x (u1 /	1))^2) ^ (D)d))^2 93 93 Mxx part EC2) ' W1)	0.5 2)^0.5 W1 5096676	N/ N/
β Circ If Bi-A× β Pe = 1 Fig 6.2 c1 & c2 k	xial = 20 a 2 are f = =	Pr 1 + EC2 states Pi 1 + Pr 1 + fixed Depends c	0.6 π (MeD / that formula a 1.8 (((MeDx) 1.8 (((MeDx) 1.8 ((MeDx)	VeD) / (Dia + (pplies to a rec (/ VeD) / (c1 + (/ VeD) / (c1 + Mxx Myy Bi - Axial where c1 = 0.5 t) + Mxx part -	etangular o 2(xD)d))' 1.5(xD)d) c1 600 600 5 x actual 1 =	column, $^{2} + (1)^{2} + (1)^{2} + \frac{c2}{600}$ $\frac{600}{600} = \frac{c2}{c2}$ to give $u1 / u1^{2}$	(Medy) ((Med k 0.70 <u>Cc</u> 2c2 / c * + +	ular, conserva y / Ved) / (c2 + yyy / Ved) / (c2 <u>Med / Ved</u> N/A onstant Myy pa c1 (not c1 / 2c)	tively, s 2(xD)d + 1.5(x 511 511 511 511 2 as in 2 as in) x (u1 /	1))^2) ^ (D)d))^2 93 93 Mxx part EC2) ' W1)	0.5 2)^0.5 W1 5096676	N/ N/
β Circ If Bi-A× β Pe = 1 Fig 6.2 c1 & c2 k β	xial = 20 a 2 are f = = =	Pr 1 + EC2 states Pi 1 + Pr 1 + fixed Depends c Myy part (/ u1 - c1	0.6 π (MeD / that formula a 1.8 (((MeDx) 1.8 (((MeDx) 1.8 ((MeDx) n c2 / c1 ratio	VeD) / (Dia + (pplies to a rec (/ VeD) / (c1 + (/ VeD) / (c1 + Mxx Myy Bi - Axial where c1 = 0.5 t) + Mxx part -	etangular o 2(xD)d))' 1.5(xD)d) c1 600 600 5 x actual 1 =	column, $^{2} + (1)^{2} + (1)^{2} + \frac{c2}{600}$ $\frac{600}{600} = \frac{c2}{c2}$ to give $u1 / u1^{2}$	(Medy) ((Med k 0.70 <u>Cc</u> 2c2 / c * + +	ular, conserva y / Ved) / (c2 + yyy / Ved) / (c2 <u>Med / Ved</u> N/A onstant Myy pa c1 (not c1 / 2c2 < (Medyy / Ved)	tively, s 2(xD)d + 1.5(x 511 511 511 511 2 as in 2 as in) x (u1 /	I))^2) ^ (D)d))^2 93 93 Mxx part EC2) 7 W1) πdc2 1	0.5 2)^0.5 W1 5096676	N/ N/

EC2 PUNCHING SHEAR METHOD

HAC-PRO 1 - 5 - 2

PUNCH

3

Copyright © 2009 HAC

EC2 Punching Shear Design

Principles

The method is based on multiples of the Average Effective Depth (D) from support face. Capacity is calculated on the basic number of legs around the basic control perimeter (U1) at 2.0D. Additional smaller dia radials may be added to satisfy spacing and minimum %As requirements.

Perimeter spacing must be ($\leq 2.0D$ outside and $\leq 1.5D$ inside and on U1). Minimum area of leg per (transverse x radial) area must be > 0.088 % for Fck = 30 N/mm² Radial (outwards) spacing of the legs must not exceed 0.75D. Capacity is increased with closer spacing. Where legs are required, a minimum of 2 perimeters are provided. All radials finish at Dro at a spacing interval that is within 1.5D of the Outer Perimeter Uout. Main (capacity design) radials must start between 0.3D & 0.5D from the support face. Additional intermediate radials may start at Dri if they are not required closer to the support.

Tangential Spacing / D (St/D) and %As are displayed according to Dro and Dri and non compliance is shown. The shear value is automatically adjusted according to the udl load (w) within the perimeters considered. Note: EC2 punching shear fixes the strut angle at 26.6° and Cot 26.6° = 2. This program fixes the leg angle at 90°.

Without Shear Legs

Enter average element section data over the support. Note: average cover will be basic cover + 0.5 x bar dia. Enter the appropriate Punching Shear Type, Pi, Pe, Pc or Pr to enable Punching Shear Output. Enter the Punching Shear Value the program will multiply the value by the appropriate Beta. Enter Px and Py Support Dimensions. If circular, type Dia instead of the Py value.

The program checks the support perimeter Uo and displays **Uo Fail** if Cap Ratio is > 1. If Uo check is unsatisfactory, increase the slab thickness or add a column head.

Set leg dia, radial (outward) spacing (Sr) and transverse (perimeter) nrs (nr and nra) to 0. The diagram will show the support, U1 perimeter in red and Uout perimeter(if > U1) in blue. The xD factor (Dout) where the concrete is sufficient without shear legs (Uout) is displayed in the output. You can check that the Cap Ratio = 1.0 when this value is entered into the xD data field. If Dout is ≤ 2.0 (which sets Control Perimeter U1), no legs are required, section is satisfactory.

With Shear Legs

Set xD factor to 2.0 and enter primary radial leg dia φ 1 and basic nr of legs. Keep to rules below. Note: basic nr of legs = nr of spaces + 1 for Pc, Pe, and Pr. Spaces = nr for Pi. Spaces must be a whole number (≤ 12) per quadrant. i.e. typically, for Pr, nr = (3 x 3) + 1 = 10. Enter radial spacing at 0.75D or less and start by making additional radials number (nra) equal to 0. Enter radial distance from support to 1st Leg (Sr1) ensuring that it is between 0.3D and 0.5D. Check capacity, transverse St/D and %As at Dro and Dri and adjust dia, radial spacing and nrs to comply. If required, add additional intermediate radials of to satisfy %AsL & St / D . Note: nr of additional radials will be basic nr -1 for Pc, Pe and Pr. i.e. typically, for Pr, nr = 10 and nra = 9.

The output displays the xD factor for the maximum (outer) leg perimeter (Dro) and %AsL & St / D values. It displays the xD factor for the minimum (inner) intermediate leg perimeter (Dri) and %AsL & St / D values. The Dri %Asl & St / D values apply to the main radials to demonstrate compliance without the intermediates.

The output displays the perimeter U appropriate to the entered xD factor for info and for checking purposes. It also allows a direct comparison with the equivalent BS design. Enter spacing instead of nr. Full code compliance and leg radials geometry can be displayed in one column without the need for a diagram. The whole EC2 procedure is quite complex at first but with practice this method is quite practical.

Amendment No. 1 of The National Annex was published in Dec 2009 and limits the shear stress VED at the first control perimeter (i.e. at 2.0D or closer if chosen) to 2 x the unreinforced stress capacity VRdc. This restriction has been incorporated into the program.

Example

See following sheet for an example that links to the graphics from the MAIN sheet. The example can also display the results for a BS design in order to show the differences.

		EC2 DES	SIGN TO	OL		H A C
		STEP BY STEP F	OR FLEX	UR	E ONLY	Howes Atkinson Crowde
		HAC-PR	O 1 - 5 - 1	2	FLEX 1	Copyright © 2009 HA
Derivation of	Code formula fo	r Lever Arm Z where A	As2 = 0 o	r is	ignored	
Mrc = Mome	nt of Resistance	of Concrete acting at	out As1		Excel	maths notation is used.
BS 8110 Clau	use 3.4.4.4	Fact = 0.67			γm = 1.5 normall	у
Conc = (Fact)*(1 / γm)* F	⁻ cu λ = 0.9	z	=	d - (0.9 / 2) X	So X = (d - z) / 0.45
Mrc = b	*(Fact / γm)* Fcu	* 0.9 * X * z =	b	•*(F	Fact / γm)* Fcu * 0.9	* ((d - z) / 0.45) * z
= b	*(Fact / γm)* Fcu	* 2 * (d - z) * z				
= b	*(2 * Fact / γm)*	Fcu*d*z - b*(2*	Fact / γm) * Fo	cu * z^2	
So b	*(2 * Fact / γm)*	Fcu*z^2 - b*(2*Fac	t / γm)* F	cu *	d*z + Mrc = 0	
Divide through I	by bd²Fcu and set 2	* Fact / λm = J and Mrc /	bd²Fcu = I	K to g	give:-	
$(J / d^2) z^2 +$	(-J/d)z + K =	0				
Divide through I	by J / d to give:-					
(1/d)z^2 -	+ (-1)z + (d	K / J) = 0 This	is a quadra	atic e	equation a z^2	+ bz + c = 0
z = (1 + (1- 4(1/d)	(dK/J))^0.5)/(2/c	1)			
Replace the 1 to	erm within the squa	re root by 4(0.25)and ca	ancel the c	d terr	ns	
z = (1 + (4(0.25) - 4	(K / J)) ^ 0.5) / (2 / d)				
4 ^ 0.5 = 2. S	o this can be broug	ht outside of the square ro	oot term			
z = (1 + (2)((0.25) -	(K/J))^0.5)/(2/d))			
Multiply top and	bottom by d / 2					
= d	(0.5 + (0.25 - K/	J)^0.5)				
= d	(0.5 + (0.25 - (K	/(2 * Fact / γm)))^ 0.5)			
Fact = 0.67 and	if γm = 1.5 this bec	omes	Z	=	d(0.5 +(0.25 - (k	(/0.893))^0.5)
С	ode Formula is ap	proximated to	Z	=	d(0.5 +(0.25 - (K/0.9))^0.5)
EC2		acc = 0.85 (NA	value)		γm = 1.5 normall	у
Conc = (acc / γm)* Fck	λ = 0.8	z	=	d - (0.8 / 2) X	So X = (d - z) / 0.4
Mrc = b	*(αcc / γm)* Fck *	0.8 * ((d - z) / 0.4) * z		=	b * (αcc / γm) * Fck	* 2 * (d - z) * z
= b	*(αcc / γm)* 2 * F	ck * d * z - b * (acc /	γm)* 2 * I	Fck *	* z^2	
So b	*(2 * αcc / γm)* F	ck*z^2 - b*(2*αcc/)	γm)* Fck'	* d *	z + Mrc = 0	
Divide through I	by bd²Fck and set 2	* α_{cc} / λm = Je and Mrc /	bd²Fck = k	Ke ar	nd solve as above to g	ive:-
z = d(0.5 +	·(0.25 - (Ke/(2*	αcc / γm))) ^ 0.5)				
αcc = 0.85 and i	f γm = 1.5 this beco	mes		=	d(0.5 +(0.25 - (k	(e / 1.133)) ^ 0.5)
-	ormula can be app		z		d(0.5 +(0.25 - ()	

			EC2 D	ESIGN TOO	JL		H	
		STE	EP BY STEP	FOR FLEX		,	Howes Atkin	son Crowder
			HAC-F	PRO 1 - 5 - 2	2	FLEX 2	Copyrigh	nt © 2009 HAC
Calculation of K	' = Max M	/ Bd² fcu a	nd M/bd²	fck without	considerir	ng As2		
Mrc	= b*	(Fact / γm) *	Fcu * 0.9 * X	*Z X	. = d*(δ-	0.4)	$\delta = \beta b = Mred$	/ M or 1
Mrc / fcu	= b *	(Fact / γm) *	0.9 * d * (δ	- 0.4)*d*(1 - (0.45 * ((δ - 0.4)))		
Mrc / b d² fcu	= K	(' =	(Fact / γr	m)*0.9*(δ	- 0.4)*(1	-(0.45 * (ð	- 0.4)))	
Mrc / b d² fck	= Ke	e' =	(α _{cc} / γm)*0.8*(ō	- 0.4)*(1-	(0.4*(δ-	0.4)))	
Equates to K'	or Ke	e' =	(J/2)*λ	.*(δ - 0.4)	- (J/2)*	(λ²/2)*(δ	- 0.4)^2	
BS Fact γm	J	λ			Redi	stribution δ		
0.67 1.5		0.9	1.0	0.9	0.85	0.8	0.75	0.7
	Max M/t	Dd ² fcu =	0.176	0.156	0.144	0.132	0.119	0.104
EC2 acc ym	Je	λ				stribution δ		
0.85 1.5	1.133 Max M / t	0.8 bd² fck =	1.0 0.207	0.9 0.181	0.85 0.167	0.8 0.152	0.75 0.136	0.7 0.120
When 7 - 0.05d								0.120
When Z = 0.95d	IVIII	1 M / bd² fcu	= 0.	042	IVIITI IVI	/ bd² fck	= 0.054	
IT N	i / bd²(fcu o	or fck) < K	or Ke'	А	\s1 =	M (kNm) x	10°/Z I	mm²
Calculation of B	alanced Ne	eutral Axis I	Distance (X	o) where Fs	s1 = Fyd an	d As1 and A	As2 are know	n.
Fyd = Fyk / γs	Conc =	(BS) 0.6	7 x Fcu / γ	c or (E	EC2) acc x	Fck / γc	If As1 only, s	et As2 = 0
1. If Fs2 = Fyd	Xo1	1 = (As	s1 x Fyd - As	2 x (Fyd - Co	onc))/(Bx/	x Conc)		
 If Fs2 = Fyd If Xo1 > d1 / (1 + 1) If Xo1 < d2 * 700 / 	Fyd / 700) =	= T d1	(= 0.		d = 434.8) Solutio	n is <mark>Invalid</mark> , Fs´ n is <mark>Invalid</mark> , Try	
lf Xo1 > d1 / (1 +	Fyd / 700) = /(700 - Fyd	= T d1 d) = C d2	(= 0. (= 2.	617 d1 if Fy 639 d2 if Fy	d = 434.8 d = 434.8) Solutic) Solutic		
If Xo1 > d1 / (1 +) If Xo1 < d2 * 700 /	Fyd / 700) = /(700 - Fyd ble and Dis	= T d1 d) = C d2 placed As2 C	(= 0. (= 2.	617 d1 if Fy 639 d2 if Fy ss Adjustme	d = 434.8 d = 434.8 ent = DC2) Solutic) Solutic = - Conc	n is <mark>Invalid</mark> , Try	Xo2a
If Xo1 > d1 / (1 +) If Xo1 < d2 * 700 / 2. If Fs2 is Varia	Fyd / 700) = /(700 - Fyd ble and Dis	= T d1 d) = C d2 placed As2 C	(= 0. (= 2. Concrete Stre As1*Fyd+As2	617 d1 if Fy 639 d2 if Fy ss Adjustme	d = 434.8 d = 434.8 ent = DC2) Solutic) Solutic = - Conc	n is <mark>Invalid</mark> , Try	Xo2a
If Xo1 > d1 / (1 + If Xo1 < d2 * 700 / 2. If Fs2 is Varia Xo2a = (-(As1*F If Xo1 > d1 / (1 +	Fyd / 700) = / (700 - Fyd ble and Dis p ⁻ yd+As2*(70 Fyd / 700) =	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1	(= 0. (= 2. Concrete Stree As1*Fyd+As2 2 * - B * (= 0.	617 d1 if Fye 639 d2 if Fye ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fye	d = 434.8 d = 434.8 ent = DC2 ^2 - (4*- d = 434.8) Solutic) Solutic = - Conc Β * λ * Conc *) Solutic	n is Invalid, Try As2 * 700 * d2 n is Invalid, Fs ²	7 Xo2a))^0.5)) 1 < Fyd
If Xo1 > d1 / (1 +) If Xo1 < d2 * 700 / 2. If Fs2 is Varia Xo2a = (-(As1*F	Fyd / 700) = / (700 - Fyd ble and Dis p ⁻ yd+As2*(70 Fyd / 700) =	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1	(= 0. (= 2. Concrete Stree As1*Fyd+As2 2 * - B * (= 0.	617 d1 if Fye 639 d2 if Fye ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fye	d = 434.8 d = 434.8 ent = DC2 ^2 - (4*- d = 434.8) Solutic) Solutic = - Conc Β * λ * Conc *) Solutic	n is Invalid, Try As2 * 700 * d2 n is Invalid, Fs ²	7 Xo2a))^0.5)) 1 < Fyd
If Xo1 > d1 / (1 + If Xo1 < d2 * 700 / 2. If Fs2 is Varia Xo2a = (-(As1*F If Xo1 > d1 / (1 +	Fyd / 700) = / (700 - Fyd ble and Dis Fyd+As2*(70 Fyd / 700) = 2 is outside	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1 Concrete Cor	(= 0. (= 2. Concrete Stre As1*Fyd+As2 2 * - B * (= 0. npression Blo	617 d1 if Fye 639 d2 if Fye ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fye ck. Solution	$d = 434.8 \\ d = 434.8 \\ ent = DC2 \\ h^2 - (4^* - 4)^2 + 4 \\ d = 434.8 \\ is Incorrect.$) Solutic) Solutic = - Conc B * λ * Conc *) Solutic Recalculate v	n is Invalid, Try As2 * 700 * d2 n is Invalid, Fs′ vith DC2 = 0 to	7 Xo2a))^0.5)) 1 < Fyd
If Xo1 > $d1/(1 + 1)$ If Xo1 < $d2 * 700$ 2. If Fs2 is Varia Xo2a = (-(As1*F) If Xo1 > $d1/(1 + 1)$ If Xo2a < $d2/\lambda$, As	Fyd / 700) = / (700 - Fyd ble and Dis / yd+As2*(70 Fyd / 700) = 2 is outside d solution fi stribution ((= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1 Concrete Cor rom Xo1 or X δ - 0.4) * d	(= 0. (= 2. concrete Stree As1*Fyd+As2 2 * - B * (= 0. npression Blo co2a or Xo2b 1) < Xo then	617 d1 if Fyn 639 d2 if Fyn ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fyn ck. Solution . The sectio Xu is used 1	d = 434.8 d = 434.8 ent = DC2 ^2 - (4 * - d = 434.8 is Incorrect. n is balance to calculate) Solution) Solution = - Conc B * λ * Conc *) Solution Recalculate with ed and Mrc = Mrc & Mrt an	n is Invalid, Try As2 * 700 * d2 n is Invalid, Fs ² vith DC2 = 0 to Mrt d Mrt > Mrc	7 Xo2a))^0.5)) 1 < Fyd
If Xo1 > d1 / (1 +) If Xo1 < d2 * 700 2. If Fs2 is Varia Xo2a = (-(As1*F If Xo1 > d1 / (1 +) If Xo2a < d2 / λ , As Xo will be the vali If Xu Due to Redis	Fyd / 700) = / (700 - Fyd ble and Dis / gd+As2*(70) Fyd / 700) = 2 is outside d solution fi stribution ((d1 / λ) then	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1 Concrete Cor rom Xo1 or X δ - 0.4) * d Z > 0.95 * d1	(= 0. (= 2. concrete Stree As1*Fyd+As2 2 * - B * (= 0. npression Blo co2a or Xo2b 1) < Xo then	617 d1 if Fye 639 d2 if Fye ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fye ck. Solution . The sectio Xu is used to calculated us	d = 434.8 d = 434.8 ent = DC2 /^2 - (4 * - d = 434.8 is Incorrect. n is balance to calculate sing Z = 0.95) Solution) Solution = - Conc B * λ * Conc *) Solution Recalculate with ed and Mrc = Mrc & Mrt an	As2 * 700 * d2 As2 * 700 * d2 on is Invalid, Fs ⁻ vith DC2 = 0 to Mrt d Mrt > Mrc : Mrc	7 Xo2a))^0.5)) 1 < Fyd
If Xo1 > $d1/(1 + 1)$ If Xo1 < $d2 * 700$ 2. If Fs2 is Varia Xo2a = (-(As1*F If Xo1 > $d1/(1 + 1)$ If Xo2a < $d2/\lambda$, As Xo will be the valia If Xu Due to Redis If X < Min X (0.1 * 1) Fconc = B * Conc	Fyd / 700) = / (700 - Fyd ble and Dis Fyd + As2*(70) Fyd / 700) = 2 is outside d solution fi tribution ((d1 / λ) then * λ * X / 1000	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1 Concrete Cor rom Xo1 or X δ - 0.4)* d Z > 0.95 * d1 0 F2 If F	(= 0. (= 2. concrete Stree As1*Fyd+As2 2 * - B * (= 0. npression Blo co2a or Xo2b 1) < Xo then , and Mrt is c	617 d1 if Fyr 639 d2 if Fyr ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fyr ck. Solution . The sectio Xu is used to calculated use / 1000	d = 434.8 d = 434.8 ent = DC2 /^2 - (4 * - d = 434.8 is Incorrect. n is balance to calculate sing Z = 0.98 F1a =) Solution) Solution = - Conc B * λ * Conc *) Solution Recalculate with and Mrc = Mrc & Mrt and Gd1 and Mrt < Fyd * As1 / 10	n is Invalid, Try As2 * 700 * d2 n is Invalid, Fs' vith DC2 = 0 to Mrt d Mrt > Mrc Mrc 2000 - F2 F	7 Xo2a))^0.5)) 1 < Fyd give Xo2b 71b = F2
If Xo1 > $d1/(1 + 1)$ If Xo1 < $d2 * 700$, 2. If Fs2 is Varia Xo2a = (-(As1*F If Xo1 > $d1/(1 + 1)$ If Xo2a < $d2/\lambda$, As Xo will be the valia If Xu Due to Redis If X < Min X (0.1 * 1) Fconc = B * Conc Mrc (a + b) = Fcon	Fyd / 700) = / (700 - Fyd ble and Disp Fyd + As2*(70) Fyd / 700) = 2 is outside d solution fin stribution ((d1 / λ) then * λ * X / 1000 inc * Z + F2 *	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1 Concrete Cor rom Xo1 or X δ - 0.4)* d Z > 0.95 * d1 0 F2 If F (d1 - d2)	(= 0. (= 2. concrete Stree As1*Fyd+As2 2 * - B * (= 0. npression Blo co2a or Xo2b 1) < Xo then , and Mrt is co = Fs2 * As2	617 d1 if Fyr 639 d2 if Fyr ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fyr ck. Solution . The sectio Xu is used to calculated use / 1000	d = 434.8 d = 434.8 ent = DC2 /^2 - (4 * - d = 434.8 is Incorrect. n is balance to calculate sing Z = 0.95 F1a = Fs2 inc) Solution) Solution = - Conc B * λ * Conc *) Solution Recalculate with ed and Mrc = Mrc & Mrt and 6d1 and Mrt < Fyd * As1 / 10 Iudes displace	n is Invalid, Try As2 * 700 * d2 n is Invalid, Fs′ vith DC2 = 0 to Mrt d Mrt > Mrc Mrc 2000 - F2 F ed concrete adj	7 Xo2a))^0.5)) 1 < Fyd give Xo2b F1b = F2 ustment
If Xo1 > $d1/(1 + 1)$ If Xo1 < $d2 * 700$ 2. If Fs2 is Varia Xo2a = (-(As1*F If Xo1 > $d1/(1 + 1)$ If Xo2a < $d2/\lambda$, As Xo will be the valia If Xu Due to Redis If X < Min X (0.1 * 1) Fconc = B * Conc	Fyd / 700) = / (700 - Fyd ble and Disp Fyd + As2*(70) Fyd / 700) = 2 is outside d solution fil stribution ((d1 / λ) then * λ * X / 1000 hc * Z + F2 * * Z + F1b *	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1 Concrete Cor rom Xo1 or X δ - 0.4)* d Z > 0.95 * d1 0 F2 If F (d1 - d2) (d1 - d2)	(= 0. (= 2. concrete Stree As1*Fyd+As2 2 * - B * (= 0. npression Blo co2a or Xo2b 1) < Xo then , and Mrt is co = Fs2 * As2	617 d1 if Fyr 639 d2 if Fyr ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fyr ck. Solution . The sectio Xu is used to calculated use / 1000	d = 434.8 d = 434.8 ent = DC2 /^2 - (4 * - d = 434.8 is Incorrect. n is balance to calculate sing Z = 0.95 F1a = Fs2 inc Z = M) Solution) Solution = - Conc B * λ * Conc *) Solution Recalculate with ed and Mrc = Mrc & Mrt and 6d1 and Mrt < Fyd * As1 / 10 Iudes displace 1in of (0.95 *	n is Invalid, Try As2 * 700 * d2 n is Invalid, Fs' vith DC2 = 0 to Mrt d Mrt > Mrc Mrc 2000 - F2 F	 Xo2a))^0.5)) 1 < Fyd give Xo2b 1b = F2 ustment 0.5 * λ * X))
If Xo1 > $d1/(1 + 1)$ If Xo1 < $d2 * 700$ 2. If Fs2 is Varia Xo2a = (-(As1*F If Xo1 > $d1/(1 + 1)$ If Xo2a < $d2/\lambda$, As Xo will be the valia If Xu Due to Rediss If X < Min X (0.1 * 1) Fconc = B * Conc Mrc (a + b) = Fcon Mrt (a + b) = F1a Mr = Min of Mrc &	Fyd / 700) = / (700 - Fyd ble and Disp Fyd + As2*(70) Fyd / 700) = 2 is outside d solution function ((d1 / λ) then * λ * X / 1000 hc * Z + F2 * * Z + F1b * Mrt Cap	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1 Concrete Cor rom Xo1 or X $\delta - 0.4$)* d Z > 0.95 * d1 0 F2 If F (d1 - d2) (d1 - d2) p = Mu / Mr	(= 0. (= 2. Concrete Stree As1*Fyd+As2 2 * - B * (= 0. npression Blo Co2a or Xo2b 1) < Xo then , and Mrt is of 3 = Fs2 * As2 s2 < 0, F2 = 0	617 d1 if Fye 639 d2 if Fye ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fye ck. Solution . The sectio Xu is used to calculated us / 1000	d = 434.8 d = 434.8 ent = DC2 /^2 - (4 * - d = 434.8 is Incorrect. is balance to calculate sing Z = 0.95 F1a = Fs2 inc Z = M If As2 =) Solution Solution Solution Solution Solution Solution Solution Recalculate with Solution Recalculate with Solution Recalculate with Solution	As2 * 700 * d2 As2 * 700 * d2 in is Invalid, Fs ² vith DC2 = 0 to Mrt d Mrt > Mrc Mrc 2000 - F2 F ed concrete adj d1) or (d1 - (0 1 = Xo2a =	 xo2a))^0.5)) 1 < Fyd give Xo2b Tb = F2 ustment 0.5 * λ * X)) Xo2b
If Xo1 > d1 / (1 + 1 If Xo1 < d2 * 700) 2. If Fs2 is Varia Xo2a = (-(As1*F If Xo1 > d1 / (1 + 1) If Xo2a < d2 / λ , As Xo will be the valia If Xu Due to Redis If X < Min X (0.1 * 1) Fconc = B * Conc Mrc (a + b) = Fcon Mrt (a + b) = F1a	Fyd / 700) = / (700 - Fyd ble and Disp Fyd + As2*(70) Fyd / 700) = 2 is outside d solution fil stribution ((d1 / λ) then * λ * X / 1000 hc * Z + F2 * * Z + F1b *	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1 Concrete Cor rom Xo1 or X δ - 0.4) * d Z > 0.95 * d1 0 F2 If F (d1 - d2) (d1 - d2) p = Mu / Mr ear V 40	$(= 0.)$ $(= 2.)$ Concrete Stree As1*Fyd+As2 $2 * - B *$ $(= 0.)$ npression Blo Co2a or Xo2b 1) < Xo then , and Mrt is co $= Fs2 * As2$ $Ss2 < 0, F2 = 0$ $00 \theta = 2$	617 d1 if Fyr 639 d2 if Fyr ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fyr ck. Solution . The sectio Xu is used the section Xu is used the section of the section Xu is used the section of the section o	d = 434.8 d = 434.8 ent = DC2 /^2 - (4 * - d = 434.8 is Incorrect. n is balance to calculate sing Z = 0.95 F1a = Fs2 inc Z = M) Solution) Solution = - Conc B * λ * Conc *) Solution Recalculate with ed and Mrc = Mrc & Mrt and Gd1 and Mrt < Fyd * As1 / 10 Iudes displace 10 (0.95 *	As 2 * 700 * d2 As 2 * 700 * d2 an is Invalid, Fs ² with DC2 = 0 to Mrt d Mrt > Mrc Mrc 2000 - F2 F ed concrete adj d1) or (d1 - (C 1 = Xo2a =	 Xo2a))^0.5)) 1 < Fyd give Xo2b Tb = F2 ustment 0.5 * λ * X))
If Xo1 > $d1/(1 + 1)$ If Xo1 < $d2 * 700$ 2. If Fs2 is Varia Xo2a = (-(As1*F If Xo1 > $d1/(1 + 1)$ If Xo2a < $d2/\lambda$, As Xo will be the valia If Xu Due to Redis If X = Min X (0.1 * 1) Fconc = B * Conc Mrc (a + b) = Fcon Mrt (a + b) = F1a Mr = Min of Mrc & Input	Fyd / 700) = / (700 - Fyd ble and Disp Fyd + As2*(70) Fyd / 700) = 2 is outside d solution fr tribution ((d1 / λ) then * λ * X / 1000 ac * Z + F2 * * Z + F1b * Mrt Cap She	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1 Concrete Cor rom Xo1 or X δ - 0.4)* dr Z > 0.95 * d1 0 F2 If F (d1 - d2) 0 = Mu / Mr ear V 40 H Yc a 0 1.5 0.	(= 0.) (= 2.) Concrete Stree As1*Fyd+As2 2 * - B * (= 0.) npression Blo Co2a or Xo2b 1) < Xo then , and Mrt is of $5 \times 2 < 0, F2 = 0$ $\frac{1}{200} - \frac{0}{2} = 0$ $\frac{2}{200} - \frac{0}{2} = 0$	617 d1 if Fyr 639 d2 if Fyr ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fyr ck. Solution . The section Xu is used to calculated use / 1000 1.8 Red /s δ 1.5 0.85 1	d = 434.8 d = 434.8 ent = DC2 /^2 - (4 * - d = 434.8 is Incorrect. n is balance to calculate sing Z = 0.95 F1a = F52 inc Z = M If As2 = Mu z / d1 196 0.95) Solution Solution Solution Solution Solution Solution Solution Solution Solution Recalculate with Solution Recalculate with Solution Recalculate with Solution	As2 * 700 * d2 As2 * 700 * d2 on is Invalid, Fs ² with DC2 = 0 to Mrt d Mrt > Mrc Mrc 000 - F2 F ed concrete adj d1) or (d1 - (0) 1 = Xo2a = Cov φ^2 C 16	$7 \times 2a$ $3))^{0.5}))$ 1 < Fyd give Xo2b 1 = F2 ustment $0.5 * \lambda * X))$ Xo2b $\overline{ace 2}$ Ctr, nr Cov 300 60
If Xo1 > d1 / (1 + 1 If Xo1 < d2 * 700) 2. If Fs2 is Varia Xo2a = (-(As1*F If Xo1 > d1 / (1 + 1) If Xo2a < d2 / λ , As Xo will be the vali If Xu Due to Redis If X din X (0.1 * 0) Fconc = B * Conc Mrc (a + b) = Fcon Mrt (a + b) = F1a Mr = Min of Mrc & Input Code Fck / Fcu EC2 30 37	Fyd / 700) = / (700 - Fyd ble and Disp Fyd + As2*(70) Fyd / 700) = 2 is outside d solution fi stribution ((d1 / λ) then * λ * X / 1000 mc * Z + F2 * Mrt Cap B H 1000 60	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1 Concrete Cor rom Xo1 or X δ - 0.4)* d Z > 0.95 * d1 0 F2 If F (d1 - d2) (d1 - d2) p = Mu / Mr ear V 4(H Yc a) 0 1.5 0. ΔFtd = 0.5	(= 0. (= 2. Concrete Stre As1*Fyd+As2 2 * - B * (= 0. npression Blo Co2a or Xo2b 1) < X0 then , and Mrt is o $5 \times 2 * As2$ $5 \times 10^{-10} + 10^{-10}$	617 d1 if Fyd 639 d2 if Fyd ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fyd 617 d1 if Fyd ck. Solution . The sectio Xu is used 1 calculated use / 1000 1.8 Red //s δ .15 0.85 N a1 =	d = 434.8 d = 434.8 ent = DC2 $h^2 - (4^* - 4)^2 - (4^* -$) Solution Solution Solution Solution Solution Solution Recalculate with Solution Recalculate with Solution Solution Solution Recalculate with Solution Recalculate with Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Recalculate with Solution Recalculate with Solution Solution Solution Solution Recalculate with Solution Recalculate with Solution Recalculate with Solution Recalculate with Solution Recalculate with Solution Solution Recalculate with Solution Recalculate with Solution Solution Recalculate with Solution Solut	As2 * 700 * d2 As2 * 700 * d2 an is Invalid, Fs ² with DC2 = 0 to Mrt d Mrt > Mrc Mrc 2000 - F2 F ed concrete adj d1) or (d1 - (C 1 = Xo2a = Cov φ 2 C	(Xo2a) (Xo2a) (Xo2a) (Xo2b) (Xo2
If Xo1 > d1 / (1 + 1 If Xo1 < d2 * 700) 2. If Fs2 is Varia Xo2a = (-(As1*F If Xo1 > d1 / (1 + 1 If Xo2a < d2 / λ , As Xo will be the valia If Xu Due to Redis If Xu Due to Redis If X = Min X (0.1 * 1 Fconc = B * Conc Mrc (a + b) = Fcon Mrt (a + b) = F1a Mr = Min of Mrc & Input Code Fck / Fcu EC2 30 37 Output She λ Conc Fyd	Fyd / 700) = / (700 - Fyd ble and Disp Fyd + As2*(700 Fyd / 700) = 2 is outside d solution fu stribution ((d1 / λ) then * λ * X / 1000 hc * Z + F2 * * Z + F1b * Mrt Cap B H 1000 60 ear Shift or I Cd2 d2	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1 Concrete Cor rom Xo1 or X δ - 0.4)*d Z > 0.95*d1 0 F2 If F (d1 - d2) (d1 - d2) (d1 - d2) p = Mu / Mr Ear V 40 1 Yc a 0 1.5 0. AFtd = 0.5 Md Δ Ftd 50 / X X01 Xc	(= 0.) (= 2.) Concrete Stree As1*Fyd+As2 2 * - B * (= 0.) npression Blo Co2a or Xo2b 1) < Xo then , and Mrt is of (= Fs2 * As2) (= 0.) (= 0.)	617 d1 if Fyd 639 d2 if Fyd ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fyd 617 d1 if Fyd ck. Solution . The sectio Xu is used to calculated use / 1000 1.8 Red //s δ 1.5 0.85 N a1 = 6.4 or Ko Xu	d = 434.8 d = 434.8 ent = DC2 $a^{2} - (4^{*} - 4^{*} $) Solution Solution Solution Solution Solution B * λ * Conc *) Solution Recalculate with recalculate with and Mrc = Mrc & Mrt an Solution Mrc & Mrt an Solution Face 1 (0.95 * = 0, X = Xco Face 1 (0.95 * = 0, X = Xco Mrc & Mrt an Solution Face 1 (0.95 * = 0, X = Xco Mrc & Mrt an Solution Solution Mrc & Mrt an Solution Solution Mrc & Mrt an Mrc & Mrc & Mr	an is Invalid, Try As2 * 700 * d2 an is Invalid, Fs' with DC2 = 0 to Mrt d Mrt > Mrc Mrc d Mrt > Mrc c Mrc 200 - F2 F ed concrete adj d1) or (d1 - (0 1 = Xo2a = F Cov ϕ 2 C 16 d = Δ Ftd * Z k Mmax for Spar DC1 As2	$7 \times 2a$ $3 \times 2a$ $3 \times 2a$ 1 < Fyd give Xo2b $5 \times 2a$ $3 \times 2a$ $3 \times 2a$ $5 \times 2a$ $3 \times 2a$ 3
If Xo1 > $d1/(1 + 1)$ If Xo1 < $d2 * 700$, 2. If Fs2 is Varia Xo2a = (-(As1*F If Xo1 > $d1/(1 + 1)$ If Xo2a < $d2/\lambda$, As Xo will be the valia If Xu Due to Redis If Xu Due to Redis If X = Min X (0.1 * 1) Fconc = B * Conc Mrc (a + b) = Fcon Mrt (a + b) = F1a Mr = Min of Mrc & Input Code Fck / Fcu EC2 30 37 Output She	Fyd / 700) = / (700 - Fyd ble and Disp Fyd + As2*(700 Fyd / 700) = 2 is outside d solution fu stribution ((d1 / λ) then * λ * X / 1000 hc * Z + F2 * * Z + F1b * Mrt Cap B H 1000 60 ear Shift or I Cd2 d2 (2) 8 179 8	= T d1 d) = C d2 placed As2 C 0+DC2)) - (((Divided By = T d1 Concrete Cor rom Xo1 or X $\delta - 0.4$)* d Z > 0.95 * d1 0 F2 If F (d1 - d2) (d1 - d2)	(= 0.) (= 2.) Concrete Stree As1*Fyd+As2 2 * - B * (= 0.) npression Blo Co2a or Xo2b 1) < Xo then , and Mrt is of (= Fs2 * As2) (= 0.) (= 0.)	617 d1 if Fyt 639 d2 if Fyt ss Adjustme *(700+DC2)) λ * Conc 617 d1 if Fyt 617 d1 if Fyt ck. Solution . The sectio Xu is used to calculated use / 1000 1 1 8 (s δ 15 0.85 15 0.85 15 0.85 6.4 0r Xu 77 236	d = 434.8 d = 434.8 ent = DC2 $a^{2} - (4^{*} - 4^{*} $) Solution Solution Solution Solution Solution Solution Recalculate with Solution Recalculate with Solution Recalculate with Solution Recalculate with Solution Recalculate with Solution Solution Recalculate with Solution Solution Recalculate with Solution Recalculate with Solution Recalculate with Solution	As2 * 700 * d2 As2 * 700 * d2 an is Invalid, Fs' with DC2 = 0 to Mrt d Mrt > Mrc Cov $F2$ F ed concrete adj d1) or (d1 - (C) 1 = Xo2a = Cov $\phi2$ C 16 d = Δ Ftd * Z k Mmax for Spar	7 Xo2a $3))^{0.5}))$ 1 < Fyd give Xo2b 1 = F2 ustment $0.5 * \lambda * X))$ Xo2b 2ace 2 Ctr, nr Cov 300 60 Shm n or Supp

EC2 DESIGN TOOL			
GENERAL FLEXURE			Howes Atkinson Crowder LLP
HAC-PRO 1 - 5 - 2	FLEX	3	Copyright © 2009 HAC

Flexur	e Case	e	1												
Code	EC2	Mu	1196	Conc	30	/	37 H		600 bw	1000	fyk 500	0.7	> ō <= 0.8	5	0.85
Dia1	32	Ctrs or	Nr (< 50)	130	Cov 1	60 As	s1 <mark>6</mark>	187 % =	1.181	d1 524	ł –	fyc	k k	434.8
Dia2	16	Ctrs or	Nr (< 50)	300	Cov 2	60 As	s2	<mark>670</mark> % =	0.128	d2 68	d1-d2	<mark>456</mark> Mi	n%	0.151
As1		Ke'	=	0.453	*(δ-	0.4) -	- 0.18 * (δ - 0.4	4)²		=		0.167 Ra	atio	
		Ke	=	M / bw	/ d1² fck	Σ.					=		0.145 Ra	atio	
		Mr	=	Ke' x b	w x d1 ²	² x fck	=	Mr ign	oring As	2	=		1378 kN	lm	
Z (Max	x = 0.9	5d1)	=	d1 (0.	5 + (0	.25 - (1	Vin of Ke	or Ke')) / 1.13)) ^ 0.5)	=		445 mr	n	
As1 Re	eq		=	M/(Z	ːfyd) li	f As2 re	eq Mr / Z	fyd + (N	/I - Mr) /	((d1 - d2)) fyd) 🛛 =		<mark>6186</mark> mr	m²	<prov< td=""></prov<>
As2			=	Neutra	al axis X	(=	(d1 - Z)	/ 0.4			=		N/A mr	n	
Fs2 Sta	atus		=	As2 st	ress lim	ited at	X > 2.64	d2	Lim	it is at	=		N/A mr	n	N/A
Fs2			=	(If Lim	, fyd, If	Var, 7	00 x (X - (d2) / X)	- (fck x (0.85 / 1.5)) =		<mark>N/A</mark> N/	mm²	
As2 Re	eq		=	(M - M	lr) / (d´	1 - d2) :	x Fs2				=		N/A mr	m²	N/A

Flexure Case

Flexure	e Case)	2														
Code	BS	Mu	1196	Conc	30	/	37 H	-	600 bv	V	1000	fyk	500	0.7	> ð <=	0.9	0.85
Dia1	32	Ctrs or	Nr (< 50)	130	Cov 1	60 A	As1	6187 %	=	1.181	d1	524			fyd	434.8
Dia2	16	Ctrs or	Nr (< 50)	300	Cov 2	60 A	As2	<mark>670</mark> %	=	0.128	d2	68	d1-d2	456	Min%	0.13
As1		K'	=	0.402	2*(δ-	0.4) ·	- 0.18 *	(δ-0	.4)²				=		0.144	Ratio	
		K	=	M / bv	v d1² fcu	1							=		0.118	Ratio	
		Mr	=	K' x b	w x d1² :	x fcu	=	= Mrig	noring A	\s2			=		1466	kNm	
Z (Max	x = 0.9	5d1)	=	d1 (0	.5 + (0	.25 - (Min of I	K or K')	/0.9))	^ 0.5)		=		443	mm	
As1 Re	pe		=	M/(2	Z fyd) It	f As2 re	eq Mr / Z	<u>Z</u> fyd + ((M - Mr)	/ ((d [.]	1 - d2)	fyd)	=		6211	mm²	>Prov
As2			=	Neutra	al axis X	(=	(d1 - Z) / 0.45					=		N/A	mm	
Fs2 Sta	atus		=	As2 s	tress lim	ited at	X > 2.64	4 d2	Lii	mit is	at		=		N/A	mm	N/A
Fs2			=	(If Lim	n, fyd, If	Var, 7	00 x (X -	- d2) / X	<) - (fcu >	¢ 0.67	7 / 1.5))	=		N/A	N/mm ²	2
As2 Re	eq		=	(M - N	1r) / (d´	1 - d2)	x Fs2						=		N/A	mm²	N/A

Flexure Case

3

Code	EC2	Mu	1500	Conc	30	/	37 H	1	600	bw	1000 fy	k 500	0.7	> δ <=	0.85	0.85
Dia1	32 C	trs or	Nr (< 50)	10 C	Cov 1	60 A	\s1	8042	% =	1.535 d′	1 <u>52</u> 4	Ļ į		fyd	434.8
Dia2	16 C	trs or	Nr (< 50)	5 0	Cov 2	60 A	As2	1005	% =	0.192 d2	2 <mark>68</mark>	d1-d2	456	Min%	0.151
As1		Ke'	=	0.453	*(δ-().4) -	0.18 *	(δ-	· 0.4)²			=		0.167	Ratio	
		Ke	=	M / bw	d1² fck							=		0.182	Ratio	>Ke'
		Mr	=	Ke' x b	w x d1 ²	x fck	=	= Mr	ignorin	g As2		=		1378	kNm	
Z (Max	x = 0.95d	1)	=	d1 (0.5	5 + (0.2	25 - (N	lin of K	le or	Ke') / 1	13))	^ 0.5)	=		429	mm	
As1 Re	eq		=	M / (Z	fyd) If .	As2 re	q Mr / Z	∠ fyd ·	+ (M - N	1r) / (((d1 - d2) fy	d) =		7998	mm²	<prov< td=""></prov<>
As2			=	Neutral	axis X	= (d1 - Z)) / 0.4	ŀ			=		237	mm	
Fs2 Sta	atus		=	As2 str	ess limi	ted at X	X > 2.64	4 d2		Limit	is at	=		180	mm	Lim
Fs2			=	(If Lim,	fyd, If V	/ar, 70	0 x (X -	d2)	/ X) - (fo	k x 0.	85 / 1.5)	=		418	N/mm	2
As2 Re	eq		=	(M - Mr	·) / (d1	- d2) x	Fs2					=		641	mm²	<prov< td=""></prov<>

Flexure Case 4 Mu 1500 Conc 30 37 H 1000 fyk 500 $0.7 > \delta <= 0.9$ 0.85 Code BS 600 bw 1 8042 % = Dia1 32 Ctrs or Nr (< 50) 10 Cov 1 1.535 d1 524 434.8 60 As1 fyd 1005 % = 456 Min% Dia2 16 Ctrs or Nr (< 50) 5 Cov 2 60 As2 0.192 d2 68 d1-d2 0.13 $0.402*(\delta - 0.4) - 0.18*(\delta - 0.4)^2$ 0.144 Ratio As1 K' = = Κ = M / bw d1² fcu = 0.148 Ratio >K' K' x bw x d1² x fcu Mr = = Mr ignoring As2 = 1466 kNm Z (Max = 0.95d1) d1 (0.5 + (0.25 - (Min of K or K') / 0.9))^0.5) = = 419 mm As1 Req M / (Z fyd) If As2 req Mr / Z fyd + (M - Mr) / ((d1 - d2) fyd) = 8220 mm² >Prov = As2 = Neutral axis X = (d1 - Z) / 0.45= 233 mm Fs2 Status As2 stress limited at X > 2.64 d2 Limit is at = 180 mm = Lim Fs2 = (If Lim, fyd, If Var, 700 x (X - d2) / X) - (fcu x 0.67 / 1.5) = 418 N/mm² As2 Req = (M - Mr) / (d1 - d2) x Fs2 = 180 mm² <Prov

					IGN TO						H		[C]	4
		STEP I	BY ST	EP FC	R FLE	XURE	ONL	Y		Hov	ves Atk	inson C	rowder	LLF
			н		1 - 5 -	. 2		FLEX	4		Copyri	ght © 20	09 HAC	
			10	101110	1 0	2		TLLA						
	Ultimate Flexure Only Calculati	on - O	ut of E	Balance	Check	When	n Redis	tributi	on Fac	tor Fo	rces X	< Xo		
	Comparison between Centre Li	ne Equi	libriur	n Meth	od and	Lever	Arm E	quilib	rium M	ethod				
1	Centre Line Method which cheo	ke ogui	libriu	n ahou	t Contr	o Lino								
I	Using Xo This is the value of	•				e Line								
	0						-							1
	V.	Case	1	2 63	3 61	4	5	6	7	8	9	10	11 121	•
	Xo	mm Dotio												
	X/D	Ratio		0.12	0.11								0.32	
	Fs1 Fs3	N /mm ²		-435	-435								-435	
		N /mm ²		-435	-435								-435	
	Fs2	N /mm ²		29	4								325	
	Ult Axial Capacity	kN		0	0								0	
Мо	Ult Moment Capacity	kNm		467	467								461	
	Using Min of Xu or Xo If 0.7 < δ	< 10	fXo<	XII XO	a is use	d and	there v	vill be	no out	of hal	ance			
	Min of Xu or Xo	mm		63	61								115	Γ
	X / D	Ratio		0.12	0.11								0.30	
	Fs1	N /mm ²		-435	-435								-435	
	Fs3	N /mm ²		-435	-435								-435	
	Fs2	N /mm ²		29	4								304	
	Ult Axial Capacity	kN		0	0								-81	
	Ult Moment Capacity	kNm		467	467								449	
	Out of balance force	kN		0	0								-81	
	At an Eccentricity of	mm		240	240								157	
	M Out of Bal about Centre Line	kNm		0	0								-13	
Mb	If O / B Force is removed Mb =	kNm		467	467								437	
MID.		NINITI		101	101				I	1		1	101	I
2	Lever Arm Method which is bas	sed on a	coun	le aboi	ut Tens	ion an	d Com	pressi	on Cer	ntroids	;			
-	Using Min of Xu or Xo If $0.7 < \delta$													
	If X < 0.1D / λ then Lever Arm Z													
	·					1								
	Min of Xu or Xo	mm		63	<mark>61</mark>								115	
	X / D	Ratio		0.12	0.11								0.30	
	Fs1	N /mm²		-435	-435								-435	
	Fs3	N /mm²		-435	-435								-435	
	Fs2	N /mm ²		29	4								304	
	F conc in comp	kN		851	903								935	
		kN		60	7					1		1	382	1
	F Reinf in Comp allowing for displ conc	NIN		••									001	
	F Reinf in Comp allowing for displ conc F Reinf in Tension	kN		-911	-911								-1399	
	F Reinf in Tension	kN		-911	-911								-1399	

Therefore, if the out of balance tensile force is removed the section can be in equilibrium about the centre line or by the lever arm method. This is best done by reducing the tension reinforcement if Mrt > Mrc It can also be done by increasing the compression reinforcement if M > Mrc

kNm

kNm

kΝ

kΝ

kNm

kNm

kNm

kΝ

kΝ

kNm

kNm

Mr Comp Reinf about Tens Reinf

F Ten Reinf acting against conc block

F Ten Reinf acting against Comp Reinf

Mr Ten Reinf acting about Conc Block

Mr Ten Reinf acting about Comp Reinf

F ten reinf about Conc Block becomes

Mr Ten Reinf about conc block becomes

Mr Comp Total

Mr Tens Reinf Total

If T is reduced by

Mr = Mr Tens total becomes

Mb

Мс

Mt

Mc =

The main purpose of redistributing moments is to reduce tension reinforcement. The purpose of limiting X is also to ensure Mrc > Mrt so it fails in tension first.

29

465

-851

-60

-436

-29

-465

0

-851

-436

-465

4

467

-903

-7

-463

-4

-467

0

-903

-463

-467

122

437

-1016

-382

-342

-122

-464

-81

-935

-314

-437

					IGN TO						Η	A	[C]	
		STEP	BY ST	EP FC	R FLE	XURE		Y		Hov	ves Atk	inson C	rowde	r
			HA	AC-PRO	1 - 5	- 2		FLEX	5		Copyri	ght © 20	009 HAC	;
	Ultimate Flexure Only Calculation	on - 0	ut of B	alanco	Check	Whor	Rodia	stributi	on Fac	tor Fo	rcas X	< X0		
	Comparison between Centre Lir													
1	Centre Line Method which chec	ks eau	ilibriur	n abou	t Centi	e l ine								
•	Using Xo This is the value of X					••								
		Case	13	14	15	16	17	18	19	20	21	22	23	-
	Хо	mm	89	63	203									•
	X / D	Ratio	0.17	0.16	0.54									
	Fs1	N /mm ²	-435	-435	-435									
	Fs3	N /mm ²		-435	-435									
	Fs2	N /mm ²	197	37	418									
	Nu	kN	0	0	0									
Мо	Mu	kNm	840	197	658									
					_									
	Using Min of Xu or Xo If 0.7 < δ Min of Xu or Xo	< 1.0. mm	lf Xo < 89	Xu, Xo 63	113 use	d and	there v	vill be	no out	of bala	ance.			-
	X / D	Ratio	0.17	0.16	0.30									
	Fs1	N /mm ²		-435	-435									
	Fs3													
		N /mm ²		-435	-435									
	Fs2	N /mm ²		37	300									
	Nu	kN	0	0	-883									
	Mu	kNm	840	197	562									
	Out of balance force	kN	0	0	-883									
	At an Eccentricity of	mm	236	163	153									
	M Out of Bal about Centre Line	kNm	0	0	-135									
Mb	If O / B Force is removed Mb =	kNm	840	197	427									
2	Lever Arm Method which is bas Using Min of Xu or Xo If 0.7 < δ If X < 0.1D / λ then Lever Arm Z : Min of Xu or Xo	< 1.0.	If Xo	< Xu re	sults v	/ill be t	the sar	ne as a	above.					-
	X / D	Ratio	0.17	0.16	0.30									
	Fs1	N /mm ²	-435	-435	-435									
	Fs3	N /mm ²	-435	-435	-435									
	Fs2	N /mm ²	197	37	300									
	F conc in comp	kN	1213	517	925									
	F Reinf in Comp allowing for displ conc	kN	494	30	377									
	F Reinf in Tension	kN	-1707	-546	-2185									
		mm	500	363	333									
	Lever Arm Comp Reinf to Tens Reinf	mm	474	328	316									
	Mr Concrete Block about Tens Reinf	kNm	606	187	308									
M-	Mr Comp Reinf about Tens Reinf	kNm kNm	234	10	119									
Mc	Mr Comp Total	kNm	840	197	427									
= Mb	F Ten Reinf acting against conc block	kN	-1213	-517	-1808									
	F Ten Reinf acting against Comp Reinf	kN	-494	-30	-377									
	Mr Ten Reinf acting about Conc Block	kNm	-606	-187	-601									
	Mr Ten Reinf acting about Comp Reinf	kNm	-234	-10	-119									
Mt	Mr Tens Reinf Total	kNm	-840	-197	-721									
	If T is reduced by	kN	0	0	-883								1	
		kN	-1213	-517	-925									

Mr = Mr Tens total becomes Mc = Mb

Mr Ten Reinf about conc block becomes

Therefore, if the out of balance tensile force is removed the section can be in equilibrium about the centre line or by the lever arm method. This is best done by reducing the tension reinforcement if Mrt > Mrc It can also be done by increasing the compression reinforcement if M > Mrc

-606

-840

kNm

kNm

The main purpose of redistributing moments is to reduce tension reinforcement. The purpose of limiting X is also to ensure Mrc > Mrt so it fails in tension first.

-187

-197

-308

-427

	STEP BY	STER	2 DES P FOR AC-PRO	SLEN	DER C	OLUN	INS SLEN	1	Hov		A inson C ght © 20		
Comparison between BS8110 & E	EC2 Slender Colun						OLLIT		I				
							Ca	ase					
Common Data Ultimate Applied Axial Load kN Ultimate Applied Maximum End Moment kN Ultimate Applied Minimum End Moment kN Effective Length Leff, BS = le, EC2 = lo Unbraced (U) or Braced (B) Primary Loading - Transverse (T) or Vertica	m BS,EC2 M1,MC∼ le,lo UorB		2	3	4	5	6	7	8	9	10	11	12 965 50 30 9000 B V
BS Designle / h limit - determines if slenderle / h - where h = depth H & b = width IStatus - Slender or ShortTotal Area of reinf = As1 + As1a + As2 mmUlt Axial Only Cap = 0.45 fcu*h*b + Asc*0.8Nbal = Axial Load at max moment resistanceK = (Nuz - Ned) / (Nuz - Nbal) < 1	1 ² Asc N7*fy kN Nuz												20 30 SLEN 4909 5132 1040 1.000 0.450 135 60 130 130
EC2 Design - First Order & Imperfections $\varphi ef = creep x ratio of Mperm / Mdesign = 0$ $\omega = As fyd / Ac fcd$ n = Ned / (Ac fcd) rm = If Unbraced or Transverse = 1, else M $A = 1 / (1 + 0.2 \varphi ef)$ $B = \sqrt{(1 + 2\omega)}$ C = 1.7 - rm \sqrt{n} $\lambda \lim = 20 x A x B x C / \sqrt{n} - determines if\lambda = \log / (0.2887 x H)Status - Slender or ShortMoE = 0.4Mc1 + 0.6Mc2 \ge 0.4Mc2 kNmei = Accidental Eccentricity = H / 400 mmMi = (N) x (ei) kNmMoEd = Total First Order Moments MoE + Mathematical Accidental Science Accidental Science Accidental Science Accidental Science Accidental Motion Accidental Science Accidental Science Accidental Science Accidental Science Accidental Science Accidental Accidental Science Accidental Accidental Science Accidental Accidenta Accidental Accidental Acc$.75φ(∞,to) $φef$ ω n 1c1 / Mc2 rm A B C √n f slender $λ$ lim λ Status Moe ei Mi												1.178 0.697 0.315 0.600 0.809 1.548 1.100 0.562 49 104 Slender 60 23 22 82
Second Order - Nominal Curvature Metho β = 0.35 + fck / 200 - λ / 150 Kφ = 1 + βφef >= 1 εyd = fyd / Es = 434.7 / 200000 1 / ro x 10E3 = (εyd / 0.45d) x 10E3 / mm nu = 1 + ω nbal = Nbal / N and is taken by EC2 as 0.4 Kr = (nu - n) / (nu - 0.4) = axial load correc 1 / r x 10E3 = Kr Kφ (1 / ro) x 10E3 C = curve distribution constant e2 = Deflection = (1 / r) (1o ²) / C mm M2 = Additional Moment Ned x e2 kNm Design Moment = Med = MoEd + M2 kNm Second Order - Nominal Stiffness Metho K1 = √ (fck / 20) K2 = n λ / 170 Ecd = Ecm / 1.2 = 32836 / 1.2 N/mm ² Ic x 10E4 = B x H ³ / 12 mm4 Isx10E4=As1(d1-H/2) ² +As1a(d1a-H/2) ² +As: EI x 10E9 =((K1)(K2)(Ecd)(Ic)/(1 + φ)) + (Is) Nb = Buckling Load = π ² EI / Io ² kN	β Kφ εyd 1/ro nu nbal Kr 1 / r C e2 M2 Med d K1 K2 Ecd Ic 2(H/2-d2) ² Is												0.000 1.000 0.022 0.021 1.697 0.400 1.000 0.021 10 166 160 242 1.225 0.193 27364 135000 2871 9747 1188 1.234

		EC	2 DES	IGN T	OOL					H	A	C	50
	STEP B	Y STEI	P FOR	SLEN	DER (COLUI	MNS		How	ves Atk	inson C	Crowde	r LLP
		Н	AC-PRO	1 - 5	- 2		SLEN	2		Copyri	ght © 20	009 HAC	
Comparison between BS8110 &	EC2 Slender Colu	mns											
		1.40	1.40	1.40	1.40	1.40	1.40 Ca	1.40 ase	1.40	1.40	1.40	1.40	1.40
Common Data Ultimate Applied Axial Load kN	Ned	13	14	15	16	17	18	19	20 1500	21 1500	22	23	24
Ultimate Applied Maximum End Moment	KNM BS, EC2 M2, MC	2							80	80			
Ultimate Applied Minimum End Moment kl Effective Length Leff, BS = le , EC2 = lc									-50 5670				
Unbraced (U) or Braced (B)	U or l								5070 B				
Primary Loading - Transverse (T) or Vertic	cal (V) T or V	/							V	V			
BS Design													
le / h limit - determines if slender le / h - where h = depth H & b = width	n B le/h li n								20 19	20 20			
Status - Slender or Short	Statu								Short	SLEN			
Total Area of reinf = As1 + As1a + As2 m										3217			
Ult Axial Only Cap = 0.45 fcu*h*b + Asc*0. Nbal = Axial Load at max moment resistar	•									2898 587			
K = (Nuz - Ned) / (Nuz - Nbal) < 1	K									0.605			
$\beta a = (1 / 2000) x (Le / h)^2$ $\alpha u = \beta K h mm$	βa									0.203 37			
$Mi = 0.4M_1 + 0.6M_2 >= 0.4M_2 \text{ kNm}$	au Mi									37			
Madd = N _E d x au kNm	Mado									55			
Design Moment = M⊧d = Mi + Madd kNn	n Med									87			
EC2 Design - First Order & Imperfection pef = creep x ratio of Mperm / Mdesign =									1.178	1.178			
$\omega = \text{As fyd} / \text{Ac fcd}$	0.75φ(∞,to) φef ω								0.914	0.914			
n = N _E d / (Ac fcd)	n								0.980				
rm = If Unbraced or Transverse = 1, else A = $1/(1 + 0.2 \phi ef)$	Mc1 / Mc2 rm								-0.625 0.809				
$B = \sqrt{(1 + 2\omega)}$	B								1.682				
C = 1.7 - rm	C								2.325				
\sqrt{n} λ lim = 20 x A x B x C / \sqrt{n} - determines	if slender \sqrt{n}								0.990 64	0.990 64			
$\lambda = lo / (0.2887 \text{ x H})$	λ								65	70			
Status - Slender or Short MoE = 0.4Mc1 + 0.6Mc2 >= 0.4Mc2 kNm	Statu	-								Slender			
ei = Accidental Eccentricity = H / 400 mm	Moe ei								32 14				
Mi=(N)x(ei) kNm	Mi								21	23			
Moed = Total First Order Moments Moe +	Mi kNm Moed	1							53	55			
Second Order - Nominal Curvature Met $\beta = 0.35 + fck / 200 - \lambda / 150$									0.064	0.034			
Kφ = 1 + βφef >= 1	β Κφ								1.075				
ɛyd = fyd / Es = 0 / 200000	εyd								0.002				
1 / ro x 10E3 = (ϵ yd / 0.45d) x 10E3 / m nu = 1 + ω	m 1/ro nu								0.020	0.020 1.914			
nbal = Nbal / N and is taken by EC2 as 0.4									0.400				
Kr = (nu - n) / (nu - 0.4) = axial load correction									0.617	0.617			
$1 / r \times 10E3 = Kr K\phi (1 / ro) \times 10E3$ C = curve distribution constant	1/r C								0.013 10				
$e^2 = Deflection = (1 / r) (10^2) / C$ mm	e2								42				
M2 = Additional Moment NEd x e2 kNm	M2								63				
Design Moment = MEd = MoEd + M2 kNm Second Order - Nominal Stiffness Meth									117	124			
$K1 = \sqrt{(fck / 20)}$	К1			1	1	1			1.225				1
$K2 = n \lambda / 170$ End = Eng / 1.2 = 0 / 1.2 N/mm ²	K2			1	1	1			0.200				1
Ecd = Ecm / 1.2 = 0 / 1.2 N/mm ² lc x 10E4 = B x H ³ / 12 mm4	Ecd Ic								27364 67500				
Isx10E4=As1(d1-H/2) ² +As1a(d1a-H/2) ² +A	s2(H/2-d2) ² Is								2843	2843			
EI x 10E9 =((K1)(K2)(Ecd)(Ic)/(1 + ϕ)) + (I									7763				
Nb = Buckling Load = $\pi^2 \text{ El } / \log^2 kN$ $\beta = \pi^2 / 8$	Nb β								2383 1.234	2093 1.234			
Design Moment Med = Moed $(1+\beta / ((Nb/N)))$									165				

					STAAD			GN TC PUT C		RTER			How	H es Atki	A nson C	C rowder LL
						HA	AC-PRO	1 - 5 -	2	S	TAAD	1		Copyri	ght © 20	09 HAC
STAA	D PRO	ο ουτ	PUT A	SSEMBLER	2		Incluc	les Wo	ood ar	d Arm	er Mx	y Adju	istme	nt		
	The following method allows STAAD output to be copied in one operation and arranged to be suitable for copying and pasting into the MAIN spreadsheet. Section dimensions are in mm.															
Suitable for copying and pasting into the MAIN spreadsheet. Section dimensions are in mm. Note:- v is always an Absolute (+ve) value of SQ and n = - S so that N is negative if in Tension SQ, S, v & n are in N / mm ² Shear Force V = v x H x B / 1000 kN Output M is in kNm per width B Shear Force V = v x H x B / 1000 kN																
	-	v is a SQ, S	ways a , v & n	an Absolute are in N / m	e (+ve) v nm²	value	of SQ		1 = - S	so that Output	t N is M is	negat in kNr	ive if i n per	in Ten width	В	
Note: Resul	- Its For	v is a SQ, S Shear All 4	ways a , v & n	an Absolute are in N / m	e (+ve) v nm²	value	of SQ		1 = - S	so that Output	t N is M is	negat in kNr	ive if i n per	in Ten width	В	
Note:	- Its For	v is a SQ, S Shear	ways a , v & n [.] Force	an Absolute are in N / m	e (+ve) v nm² : B / 100	value	of SQ		1 = - S	so that Output	t N is M is	negat in kNr	ive if i n per	in Ten width	В	
Note: Resul Load (1 Panel 1	- Its For Case W & A Type	v is a SQ, S Shear All 4 2 FTB	ways a , v & n [.] Force Nodes	an Absolute are in N / n V = v x H x <u>Node</u> 39	e (+ve) m ² B / 100 SQx -0.22	value 00 kN <u>SQy</u> -0	of SC Sx 0.197	and r Sy -0.03	Sxy 0.006	so that Output Axial F <u>Mx</u> -184	M is M is orce	negat in kNr N = n Mxy -12	ive if i n per	in Ten width	В	Y
Note: Resul Load (Panel 1 Mh at	- Its For Case W & A Type Loc	v is a SQ, S Shear All 4 2 FTB Y Wall int	ways a , v & n Force Nodes Plate	an Absolute are in N / n V = v x H x <u>Node</u> 39 40	e (+ve) m ² B / 100 SQx -0.22 -0.22	value 00 kN <u>SQy</u> -0 0.11	of SQ 0.197 0.244	and r Sy -0.03 0.052	Sxy 0.006 0.003	so that Output Axial F <u>Mx</u> -184 -277	M is orce <u>My</u> -21 -73	negat in kNr N = n <u>Mxy</u> -12 -1	ive if i n per	in Ten width B / 10 Dir	B 00 kN X	•
Note: Resul Load (1 Panel 1	- Its For Case W & A Type Loc	v is a SQ, S Shear All 4 2 FTB Y Wall	ways a , v & n Force Nodes Plate	an Absolute are in N / n V = v x H x <u>Node</u> 39	e (+ve) m ² B / 100 SQx -0.22	value 00 kN <u>SQy</u> -0 0.11 0.11	of SQ 0.197 0.244	and r Sy -0.03	Sxy 0.006 0.003	so that Output Axial F <u>Mx</u> -184	M is M is orce	negat in kNr N = n Mxy -12	ive if i n per	in Ten width B / 10	B 00 kN	Y 0.11 -0.055

Basic Procedure

Wood and Armer

Moments

Copy the loadcase plate values from STAAD output.

-227

-307

My1

My1

Paste into the shaded cell which will vary in position according to the data type selected.

Mx2

Mx2

-180

-354

22

-58

Plate and Load Case values will only display for the first node in a group. Otherwise, enter missing data manually. Enter Design Description. Plate number is inserted automatically. This can be copied and pasted into MAIN sheet. Enter Section Data. This can be copied and pasted into MAIN sheet.

My2

My2

Mxd

Mxd

-12

-24

0

-307

Myd

Myd

-163

-307

NkN

M kNm

-12

-58

66

-33

-58

Enter Direction of results, X or Y or X & Y.

Enter Node Ref for the All 4 Nodes case.

Mx1

Mx1

Select if Wood and Armer analysis is required to include Mxy values or delete Mxy. See below.

The values will automatically fill up and arrange the data at the right so V is always +ve and N is -ve if in Tension. Copy the V N M values and Paste into the MAIN sheet. Use Paste Special & Values Only

The centre or single node or summary table is more compact and is usable for most cases.

Wood and Armer Procedure

It is undertaken twice as the results depend on the sign of Mx and My. +ve M denotes tension on the +ve Z face. The method produces one appropriate result for each direction. These are selected automatically by the program.

A	Mx1 = Mx + abs(Mxy) My1 = My + abs(Mxy) Mx2 = Mx + abs(Mxy2 / My) My2 = My + abs(Mxy2 / Mx)	If both Mx1 and My1 are positive, Mxd = Mx1 and Myd = My1. If both Mx1 and My1 are negative, $Mxd = 0$ and $Myd = 0$. If Mx1 is negative and My1 positive, $Mxd = 0$ and $Myd = My2$. If My1 is negative and Mx1 positive, $Mxd = Mx2$ and $Myd = 0$.
В	Mx1 = Mx - abs(Mxy) My1 = My - abs(Mxy) Mx2 = Mx - abs(Mxy2 / My) My2 = My - abs(Mxy2 / Mx)	If both Mx1 and My1 are positive, $Mxd = 0$ and $Myd = 0$. If both Mx1 and My1 are negative, $Mxd = Mx1$ and $Myd = My1$. If Mx1 is negative and My1 positive, $Mxd = Mx2$ and $Myd = 0$. If My1 is negative and Mx1 positive, $Mxd = 0$ and $Myd = My2$.

The procedure can be disabled by entering N after the W & A cell or setting Mxy = 0.

Centre	e or N	ode o	r Sum	mary		N	Ix1, M	y1, Mx2	2, My2,	Mxd, I	Myd ar	e Woo	d and A	Armer		Х	Y
Ref	1	Cei	ntre	Dir	X & Y	Load C	ase	2 FTB							v	0.221	0.053
Panel 1	Туре	Wall		Plate		SQx	SQy	Sx	Sy	Sxy	Мx	Му	Мxy		n	-0.234	-0.013
Mh at	Loc	int		48		-0.221	0.053	0.234	0.013	-0.019	-225	-37	-26		V kN	133	32
Corner	н	600	Mx1	-199	My1	-11	Mx2	-207	My2	-34	Mxd	0	Myd	0	N kN	-140	-8
48	В	1000	Mx1	-251	My1	-63	Mx2	-243	My2	-40	Mxd	-251	Myd	-63	M kNm	-251	-63
						_											
Ref	2	No	ode	Dir	Х	Load C	ase	=	2 FTB						v	0.221	
Panel 1	Туре	Wall	Plate		Node	SQx	SQy	Sx	Sy	Sxy	Мx	Му	Мху		n	-0.234	
Mh at	Loc	int	48		40	-0.221	0.053	0.234	0.013	-0.019	-277	-73	-1		V kN	133	
Corner	н	600	Mx1	-276	My1	-72	Mx2	-277	My2	-73	Mxd	0	Myd	0		-140	
48	В	1000	Mx1	-278	My1	-74	Mx2	-277	My2	-73	Mxd	-278	Myd	-74	M kNm	-278	
						_									-		
Ref	3	Sum	mary	Dir	Y	Load C		12 1.35	5(SW) +	⊦ 1.2(F⊺					v		0.053
Panel 1	Туре	Wall	Val	Plate		SQx	SQy	Sx	Sy	Sxy	Мx	Му	Мху		n		-0.013
Mv at	Loc	int	Min My	136		-0.221	0.053	0.234	0.013	-0.019	-41	-294	1		V kN		32
Base	н	600	Mx1	-39	My1	-293	Mx2	-41	My2	-294	Mxd	0	Myd	0	N kN		-8
136	В	1000	Mx1	-42	My1	-296	Mx2	-41	My2	-294	Mxd	-42	Myd	-296	M kNm		-296

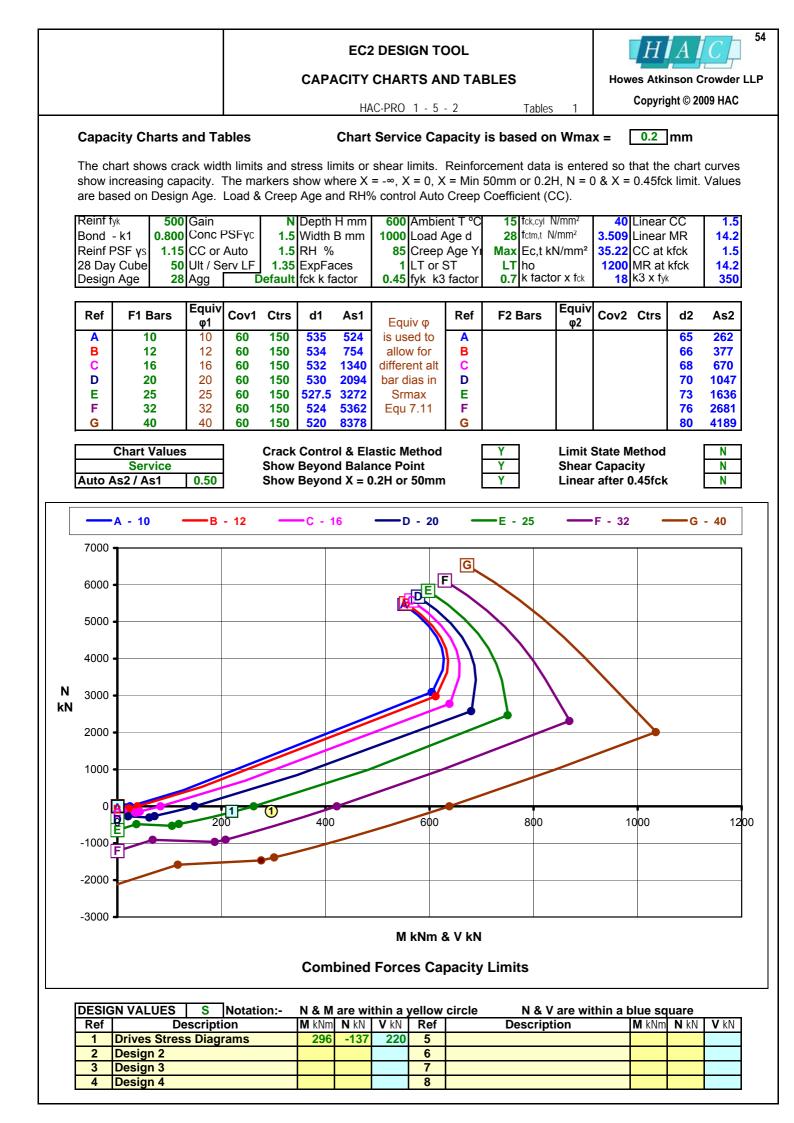
EC2 DESIGN TOOL

HAC-PRO 1 - 5 - 2 STAAD 2

Copyright © 2009 HAC

Centre	e or N	ode o	r Sum	mary		N	lx1, My	1, Mx2	2, My2,	Mxd,	Myd are	e Wood	d and	Armer	[Х	Y
Ref	1	Cer	ntre	Dir	Х	Load C	250								v		
Panel 1	Туре	Wall	ine	Plate	Λ	SQx	SQy	Sx	Sy	Sxy	Mx	My	Mxy		n		
Mh at	Loc	int					,		-,	,		,			kN		
Corner	н	600	Mx1		My1		Mx2		My2		Mxd		Myd		kΝ		
	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd	М	kNm		
D (_			<u> </u>	V												
Ref	2		ntre	Dir	Х	Load C		0	0	0			M		v		
Panel 1	Type Loc	Wall		Plate		SQx	SQy	Sx	Sy	Sxy	Мx	Му	Мху		n kN		
Mh at Corner	H	int 600	Mx1		My1		Mx2		My2		Mxd		Myd		kN		
Comer	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd		kNm		
J		1000				l											
Ref	3	Cer	ntre	Dir	Х	Load C	ase								v		
Panel 1	Туре	Wall		Plate		SQx	SQy	Sx	Sy	Sxy	Мх	Му	Мху		n		
Mh at	Loc	int													kN		
Corner	H	600	Mx1		My1		Mx2		My2		Mxd		Myd		kN		
	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd	IVI	kNm		
Ref	4	Cer	ntre	Dir	Х	Load C	ase								v		
Panel 1	Туре	Wall		Plate	~	SQx	SQy	Sx	Sy	Sxy	Mx	My	Mxy		n		
Mh at	Loc	int							-,			.,			kΝ		
Corner	н	600	Mx1		My1	- 	Mx2		My2		Mxd		Myd		kΝ		
	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd	М	kNm		
D-/	-	_	- 1		v												_
Ref	5 Typo		ntre	Dir Plate	Х	Load C		C	c.,	e	Mx	M	Maar		v n		
Panel 1 Mh at	Type Loc	Wall int		riate		SQx	SQy	Sx	Sy	Sxy	IVIX	Му	Мху		n kN		
Corner	H	600	Mx1		My1		Mx2		My2		Mxd		Myd		kN		
comer	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd		kNm		
Ref	6	Cer	ntre	Dir	Х	Load C									v		
Panel 1	Туре	Wall		Plate		SQx	SQy	Sx	Sy	Sxy	Мх	Му	Мху		n		
Mh at	Loc	int	M		M 4		Marc		M0		Maral		Maral		kN		
Corner	H B	600 1000	Mx1 Mx1		My1 My1		Mx2 Mx2		My2 My2		Mxd Mxd		Myd Myd		kN kNm		
	Ы	1000			IVI Y I		INIAL		lvi y Z		INIAU		wiyu	IVI	XI VI I I		
Ref	7	Cer	ntre	Dir	Х	Load C	ase								v		
Panel 1	Туре	Wall		Plate		SQx	SQy	Sx	Sy	Sxy	Мx	Му	Мху		n		
Mh at	Loc	int													kN		
Corner	Н	600	Mx1		My1		Mx2		My2		Mxd		Myd		kN		
	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd	M	kNm		
Ref	8	Cer	ntre	Dir	Х	Load C	ase							<u> </u>	v		
Panel 1	Туре	Wall		Plate	~	SQx											
Mh at	Loc	int					SQV	Sx	Sv	Sxv	Mx	Μv	MXV		n I		
Corner	н					UQA	SQy	Sx	Sy	Sxy	Мх	Му	Мху		n kN		
		600	Mx1		My1		Mx2	Sx	My2	Sxy	Mxd	Му	Myd	V N	kN kN		
	В	600 1000	Mx1 Mx1		My1 My1			Sx		Sxy		Му	-	V N	kΝ		
D-f		1000	Mx1		My1		Mx2 Mx2	Sx	My2	Sxy	Mxd	My	Myd	V N M	kN kN kNm		
Ref	9	1000 Cer		Dir		Load C	Mx2 Mx2 ase		My2 My2		Mxd Mxd	-	Myd Myd	V N M	kN kN kNm		
Panel 1	9 Type	1000 Cer Wall	Mx1		My1		Mx2 Mx2	Sx Sx	My2	Sxy Sxy	Mxd	My My	Myd	V N M	kN kN kNm v n		
Panel 1 Mh at	9 Type Loc	1000 Cer Wall int	Mx1 htre	Dir Plate	My1 X	Load C	Mx2 Mx2 ase SQy		My2 My2 Sy		Mxd Mxd Mx	-	Myd Myd Mxy	V N M	kN kN kNm		
Panel 1 Mh at	9 Type	1000 Cer Wall	Mx1	Dir Plate	My1	Load C	Mx2 Mx2 ase		My2 My2		Mxd Mxd	-	Myd Myd	V N M	kN kNm kNm v n kN		
Panel 1 Mh at Corner	9 Type Loc H B	1000 Cer Wall int 600 1000	Mx1 ntre Mx1 Mx1	Dir Plate	My1 X My1 My1	Load C SQx	Mx2 Mx2 ase SQy Mx2 Mx2 Mx2		My2 My2 Sy My2		Mxd Mxd Mx Mx	-	Myd Myd Mxy Myd	V N M V N M	kN kNm kNm kN kN kN kNm		
Panel 1 Mh at Corner Ref	9 Type Loc H B	1000 Cer Wall int 600 1000	Mx1 ntre Mx1	Dir Plate	My1 X My1	Load C SQx Load C	Mx2 Mx2 ase SQy Mx2 Mx2 ase	Sx	My2 My2 Sy My2 My2	Sxy	Mxd Mxd Mx Mxd Mxd	My	Myd Myd Mxy Myd Myd		kN kNm kNm kN kN kN kNm		
Panel 1 Mh at Corner Ref Panel 1	9 Type Loc H B 10 Type	1000 Cer Wall int 600 1000 Cer Wall	Mx1 ntre Mx1 Mx1	Dir Plate	My1 X My1 My1	Load C SQx	Mx2 Mx2 ase SQy Mx2 Mx2 Mx2		My2 My2 Sy My2		Mxd Mxd Mx Mx	-	Myd Myd Mxy Myd		kN kNm kNm kN kN kN kNm v n		
Panel 1 Mh at Corner Ref Panel 1 Mh at	9 Type Loc H B 10 Type Loc	1000 Cer Wall int 600 1000 Cer Wall int	Mx1 ntre Mx1 Mx1 ntre	Dir Plate	My1 X My1 My1 X	Load C SQx Load C	Mx2 Mx2 ase SQy Mx2 Mx2 ase SQy	Sx	My2 My2 Sy My2 My2 Sy	Sxy	Mxd Mxd Mx Mxd Mxd Mxd	My	Myd Myd Mxy Myd Myd Mxy		kN kNm kNm kN kN kNm kNm kNm		
Panel 1 Mh at Corner Ref Panel 1 Mh at	9 Loc H B 10 Type Loc H	1000 Cer Wall int 600 1000 Cer Wall int 600	Mx1 Mx1 Mx1 ntre Mx1	Dir Plate Dir Plate	My1 X My1 My1 X My1	Load C SQx Load C	Mx2 Mx2 ase SQy Mx2 Mx2 ase SQy Mx2	Sx	My2 My2 Sy My2 My2 Sy My2	Sxy	Mxd Mxd Mx Mxd Mxd Mxd	My	Myd Myd Mxy Myd Myd Mxy Myd		kN kNm kNm kN kN kN kNm kN kN kN		
Panel 1 Mh at Corner Ref Panel 1 Mh at	9 Type Loc H B 10 Type Loc	1000 Cer Wall int 600 1000 Cer Wall int	Mx1 ntre Mx1 Mx1 ntre	Dir Plate Dir Plate	My1 X My1 My1 X	Load C SQx Load C	Mx2 Mx2 ase SQy Mx2 Mx2 ase SQy	Sx	My2 My2 Sy My2 My2 Sy	Sxy	Mxd Mxd Mx Mxd Mxd Mxd	My	Myd Myd Mxy Myd Myd Mxy		kN kNm kNm kN kN kNm kNm kNm		
Panel 1 Mh at Corner Ref Panel 1 Mh at	9 Type Loc H B 10 Type Loc H B	1000 Cer Wall int 600 1000 Cer Wall int 600 1000	Mx1 Mx1 Mx1 ntre Mx1	Dir Plate Dir Plate	My1 X My1 My1 X My1	Load C SQx Load C SQx	Mx2 Mx2 SQy Mx2 Mx2 Mx2 ase SQy Mx2 Mx2 Mx2 ase	Sx Sx	My2 My2 Sy My2 My2 Sy My2 My2	Sxy	Mxd Mxd Mx Mxd Mxd Mxd Mxd	My My	Myd Myd Myd Myd Myd Myd	V N M V N M V N M	kN kNm kNm kN kN kN kNm kN kN kN		
Panel 1 Mh at Corner Panel 1 Mh at Corner Ref Panel 1 Panel 1	9 Type Loc H B 10 Type Loc H B 11 Type	1000 Cer Wall int 600 1000 Cer Wall int 600 1000	Mx1 htre Mx1 Mx1 htre Mx1 Mx1	Dir Plate Dir Plate	My1 X My1 My1 X My1 My1 My1	Load C SQx Load C SQx	Mx2 Mx2 ase SQy Mx2 Mx2 ase SQy Mx2 Mx2 Mx2	Sx	My2 My2 Sy My2 My2 Sy My2	Sxy	Mxd Mxd Mx Mxd Mxd Mxd	My	Myd Myd Mxy Myd Myd Mxy Myd		kN kNm V n kN kN kN kN kN kN kN v n		
Panel 1 Mh at Corner Panel 1 Mh at Corner Ref Panel 1 Mh at Panel 1 Mh at	9 Type Loc H B 10 Type Loc H B 11 Type Loc	1000 Cer Wall int 600 1000 Cer Wall int 600 1000 Cer Wall int	Mx1 htre Mx1 Mx1 htre Mx1 Mx1 htre	Dir Plate Dir Plate Dir Plate	My1 X My1 My1 X My1 My1 X	Load C SQx Load C SQx	Mx2 Mx2 SQy Mx2 Mx2 Mx2 ase SQy Mx2 Mx2 Mx2 ase SQy	Sx Sx	My2 My2 Sy My2 My2 Sy My2 My2 Sy	Sxy	Mxd Mxd Mxd Mxd Mxd Mxd Mxd Mxd	My My	Myd Myd Myd Myd Myd Myd Myd		KN KN KN KN KN KN KN KN KN KN		
Panel 1 Mh at Corner Panel 1 Mh at Corner Ref Panel 1 Mh at Panel 1 Mh at	9 Type Loc H B 10 Type Loc H B 11 Type Loc H	1000 Cer Wall int 600 1000 Cer Wall int 600 1000 Cer Wall int 600	Mx1 htre Mx1 Mx1 htre Mx1 htre Mx1 Mx1	Dir Plate Dir Plate Dir Plate	My1 X My1 My1 X My1 X My1 X My1	Load C SQx Load C SQx	Mx2 Mx2 SQy Mx2 Mx2 ase SQy Mx2 Mx2 ase SQy Mx2 Mx2	Sx Sx	My2 My2 Sy My2 My2 Sy My2 Sy Sy My2	Sxy	Mxd Mxd Mx Mxd Mxd Mxd Mxd Mxd Mxd	My My	Myd Myd Myd Myd Myd Myd Myd		kN kN kN kN kN kN kN kN kN kN kN kN kN k		
Panel 1 Mh at Corner Panel 1 Mh at Corner Ref Panel 1 Mh at Panel 1 Mh at	9 Type Loc H B 10 Type Loc H B 11 Type Loc	1000 Cer Wall int 600 1000 Cer Wall int 600 1000 Cer Wall int	Mx1 htre Mx1 Mx1 htre Mx1 Mx1 htre	Dir Plate Dir Plate Dir Plate	My1 X My1 My1 X My1 My1 X	Load C SQx Load C SQx	Mx2 Mx2 SQy Mx2 Mx2 Mx2 ase SQy Mx2 Mx2 Mx2 ase SQy	Sx Sx	My2 My2 Sy My2 My2 Sy My2 My2 Sy	Sxy	Mxd Mxd Mxd Mxd Mxd Mxd Mxd Mxd	My My	Myd Myd Myd Myd Myd Myd Myd		KN KN KN KN KN KN KN KN KN KN		
Panel 1 Mh at Corner Ref Panel 1 Mh at Corner Panel 1 Mh at Corner	9 Type Loc H B Loc H B 11 Type Loc H B	1000 Cer Wall int 600 1000 Cer Wall int 600 1000 Cer Wall int 600 1000	Mx1 htre Mx1 Mx1 htre Mx1 htre Mx1 Mx1 Mx1	Dir Plate Dir Plate Dir Plate	My1 X My1 My1 X My1 My1 X My1 My1 My1	Load C SQx Load C SQx Load C SQx	Mx2 Mx2 SQy Mx2 Mx2 ase SQy Mx2 Mx2 ase SQy Mx2 Mx2 Mx2 Mx2 Mx2	Sx Sx	My2 My2 Sy My2 My2 Sy My2 Sy Sy My2	Sxy	Mxd Mxd Mx Mxd Mxd Mxd Mxd Mxd Mxd	My My	Myd Myd Myd Myd Myd Myd Myd		kN kN kN kN kN kN kN kN kN kN kN kN kN k		
Panel 1 Mh at Corner Ref Panel 1 Mh at Corner Ref Ref	9 Type Loc H B Loc H B 11 Type Loc H B 12	1000 Cer Wall int 600 1000 Cer Wall int 600 1000 Cer	Mx1 htre Mx1 Mx1 htre Mx1 htre Mx1 Mx1	Dir Plate Dir Plate Dir Plate	My1 X My1 My1 X My1 My1 X My1 X My1	Load C SQx Load C SQx Load C SQx	Mx2 Mx2 SQy Mx2 Mx2 ase SQy Mx2 Mx2 ase SQy Mx2 Mx2 Mx2 Mx2 Mx2 Mx2 Mx2 Mx2 Mx2	Sx Sx Sx	My2 My2 Sy My2 Sy My2 My2 Sy My2 Sy My2 My2	Sxy Sxy Sxy	Mxd Mxd Mxd Mxd Mxd Mxd Mxd Mxd	My My My	Myd Myd Myd Myd Myd Myd Myd Myd Myd		kN kN kN kN kN kN kN kN kN kN kN kN kN k		
Panel 1 Mh at Corner Panel 1 Mh at Corner Panel 1 Mh at Corner Ref Panel 1 Panel 1	9 Type Loc H B 10 Type Loc H B 11 Type Loc H B 12 Type	1000 Cer Wall int 600 1000 Cer Wall int 600 1000 Cer Wall	Mx1 htre Mx1 Mx1 htre Mx1 htre Mx1 Mx1 Mx1	Dir Plate Dir Plate Dir Plate	My1 X My1 My1 X My1 My1 X My1 My1 My1	Load C SQx Load C SQx Load C SQx	Mx2 Mx2 SQy Mx2 Mx2 ase SQy Mx2 Mx2 ase SQy Mx2 Mx2 Mx2 Mx2 Mx2	Sx Sx	My2 My2 Sy My2 My2 Sy My2 Sy Sy My2	Sxy	Mxd Mxd Mx Mxd Mxd Mxd Mxd Mxd Mxd	My My	Myd Myd Myd Myd Myd Myd Myd		kN kN kN kN kN kN kN kN kN kN kN kN kN k		
Panel 1 Mh at Corner Panel 1 Mh at Corner Panel 1 Mh at Corner	9 Type Loc H B Loc H B 11 Type Loc H B 12	1000 Cer Wall int 600 1000 Cer Wall int 600 1000 Cer	Mx1 htre Mx1 Mx1 htre Mx1 htre Mx1 Mx1 Mx1	Dir Plate Dir Plate Dir Plate	My1 X My1 My1 X My1 My1 X My1 My1 My1	Load C SQx Load C SQx Load C SQx	Mx2 Mx2 SQy Mx2 Mx2 ase SQy Mx2 Mx2 ase SQy Mx2 Mx2 Mx2 Mx2 Mx2 Mx2 Mx2 Mx2 Mx2	Sx Sx Sx	My2 My2 Sy My2 Sy My2 My2 Sy My2 Sy My2 My2	Sxy Sxy Sxy	Mxd Mxd Mxd Mxd Mxd Mxd Mxd Mxd	My My My	Myd Myd Myd Myd Myd Myd Myd Myd Myd		kN kN kN kN kN kN kN kN kN kN kN kN kN k		

EC2 DESIGN TOOL

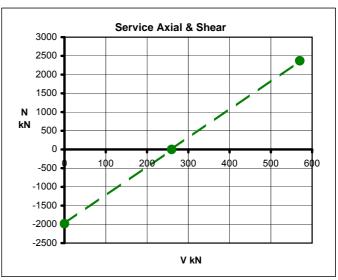

HAC-PRO 1 - 5 - 2 STAAD 3

53

Copyright © 2009 HAC

							10.00	5-1 KO	1-5-	2		DIAAD	3				
Centr	e or N	ode o	r Sum	mary		N	Mx1, My	1, Mx2	2, My2,	Mxd,	Myd are	Woo	d and /	Armer	ſ	Х	Y
				_				,	, , ,	,				_	L		
Ref	_13		ntre	Dir	Х	Load C									V		
Panel 1	Туре	Wall		Plate		SQx	SQy	Sx	Sy	Sxy	Мx	Му	Мху		n		
Mh at	Loc	int	Myd		Mad	<u> </u>	Myo		Muo		Myd		Mud		VkN		
Corner	H B	600	Mx1 Mx1		My1		Mx2 Mx2		My2		Mxd Mxd		Myd		N kN VikNm		
	D	1000	IVIXI		My1		IVIXZ		My2		IVIXU		Myd	ľ	VI KINIII		
Ref	14	Cer	ntre	Dir	Х	Load C	Case							Г	v		
Panel 1	Туре	Wall		Plate	~	SQx	SQy	Sx	Sy	Sxy	Mx	My	Мху		'n		
Mh at	Loc	int							- /						VkN		
Corner	н	600	Mx1		My1	· [Mx2		My2		Mxd		Myd		NkN		
	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd	Ν	/i kNm		
				-		-											
Ref	_15		ntre	Dir	X	Load C									v		
Panel 1	Туре	Wall		Plate		SQx	SQy	Sx	Sy	Sxy	Мx	Му	Мху		n		
Mh at	Loc H	int	Mx1		My1	<u> </u>	Mx2		My2		Mxd		Myd		V kN N kN		
Corner	В	600 1000	Mx1		My1		Mx2		My2 My2		Mxd		Myd		N kNm		
	Б	1000	IVIXI		IVIYI		IVIXZ		lvi y Z		WIXU		wyu	ľ			
Ref	16	Cer	ntre	Dir	Х	Load C	Case							Г	v		
Panel 1		Wall		Plate		SQx	SQy	Sx	Sy	Sxy	Мx	My	Мху		n		1
Mh at	Loc	int							- /	,		,	.,	<u> </u>	VkN		
Corner	Н	600	Mx1		My1	<u> </u>	Mx2		My2		Mxd		Myd		NkN		1
	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd	Ν	/i kNm		
Ref	17 Turna		ntre	Dir	Х	Load (0	0	C	N.A	N.A	NA		v		1
Panel 1	Туре	Wall		Plate		SQx	SQy	Sx	Sy	Sxy	Мx	Му	Мху		n V kN		──
Mh at	Loc H	int	Mx1		Myd	<u> </u>	Mx2		My2		Mxd		Myd		V KIN N KN		
Corner	В	600 1000	Mx1		My1 My1		Mx2		My2 My2		Mxd		-		N KIN N KNM		
	Б	1000	IVIXI		IVIYI		IVIXZ		lvi y Z		WIXU		Myd	1			l
Ref	18	Cer	ntre	Dir	Х	Load C	Case							Г	v		
Panel 1	Туре	Wall		Plate	~	SQx	SQy	Sx	Sy	Sxy	Мx	Μv	Mxy		'n		
Mh at	Loc	int						-	- /			,	,		VkN		1
Corner	н	600	Mx1		My1	· [Mx2		My2		Mxd		Myd		NkN		
	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd	Ν	/i kNm		
<u> </u>						1								-			
Ref	19 Tumo		ntre	Dir	Х	Load C		6 v	6 17	C.v.v	My	Max	Maad		v		
Panel 1	Type Loc	Wall int		Plate		SQx	SQy	Sx	Sy	Sxy	Мх	Му	Мху		n V kN		
Mh at Corner	H	600	Mx1		My1	<u> </u>	Mx2		My2		Mxd		Myd		NKN		
Comer	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd		N kNm		
	-	1000	IIIX I						,_		iiixu		y u	I.			<u> </u>
Ref	20	Cer	ntre	Dir	Х	Load C	Case								V		-
Panel 1	Туре	Wall		Plate		SQx	SQy	Sx	Sy	Sxy	Мx	My	Мху		n		
Mh at	Loc	int													VkN		
Corner	н	600	Mx1		My1		Mx2		My2		Mxd		Myd		NkN		
	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd	Ν	/i kNm		
Def	04	•		D:	v		`							F			r
Ref	21 Type		ntre	Dir Plate	X			Sx	e.,	6	Mx	NA- 7	Moul		v		1
Panel 1 Mh at	Type Loc	Wall int		riate		SQx	SQy	38	Sy	Sxy	IVIX	Му	Мху		n V kN		
Corner	H	600	Mx1		My1	L I	Mx2		My2		Mxd		Myd	———————————————————————————————————————	N kN		1
SUITEI	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd		N kNm		1
	_	1000			, 1				, -				,«				L
Ref	22	Cer	ntre	Dir	Х	Load C	Case							Г	V		
Panel 1	Туре	Wall		Plate		SQx	SQy	Sx	Sy	Sxy	Мx	Му	Мху		n		
Mh at	Loc	int													VkN		1
Corner	Н	600	Mx1		My1	T	Mx2		My2	Ţ	Mxd		Myd		NkN		ĺ
	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd	Ν	/i kNm		L
Ref	23	Co	ntre	Dir	х	Load C	266							Г	v		r
Panel 1	Туре	Wall	ill e	Plate	^	SQx		Sx	Sy	Sxy	Mx	Му	Mxy	———————————————————————————————————————	v n		1
Mh at	Loc	int		i lute		534	July	0.	<u> </u>	JAY	1117	iviy	шлу		V kN		
Corner	H	600	Mx1		My1	<u> </u>	Mx2		My2		Mxd		Myd		NkN		1
Jonici	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd		/ kNm		1
											-						
Ref	24		ntre	Dir	Х	Load C									V		[
Panel 1	Туре	Wall		Plate		SQx	SQy	Sx	Sy	Sxy	Мх	Му	Мху		n		
Mh at	Loc	int													VkN		1
Corner	Н	600	Mx1		My1		Mx2		My2		Mxd		Myd		NkN		1
	В	1000	Mx1		My1		Mx2		My2		Mxd		Myd	Ν	/I kNm		


	EC2 DESIGN TOOL			
	CAPACITY CHARTS AND TABI	LES		Howes Atkinson Crowder LLP
	HAC-PRO 1 - 5 - 2	Tables	2	Copyright © 2009 HAC
Canacity Charts and Ta	blos Cont			


Capacity Charts and Tables Cont.

Service N & M capacity values are taken as linear between the values at X = 0, N = 0 and fc = kfck. Minimum value of X = 50mm or X = 0.2X. Maximum value is where crack limit capacity is limited by kFck.

Service N & V capacity is linear between Min & Max. Max beneficial axial stress is 0.2 Fck / γc (typically 0.133 Fck). Nu = N x Load Factor. Nu at Vu = 0, Vu at Nu = 0 and Vu at Numax are calculated and then divided by LF.

Sheets 1 & 3 can be edited and printed to pdf or a printer to create your own reference document NOTE

Tabular Format Note: Cells with Bold Green Text can be adjusted to update the values in the block **Verification Example** Cells with Bold Blue Text read the values at the head of sheet NMV 1

The values are grouped together as in the block below and automatically inserted. The block can be used for verification.

W =	0.2	Ctrs	=	150	mm	As2	=	0.50	As1	Fck	40	Н	600	CC	1.5	LF	1.35
Dia	Cov		6	0						-		-		-		-	-
Dia	COV	М	Ν	Ν	V		Xcub	309.1		If X cub	o does	not gi	ve fc = l	kFck,			
	Max	869	2310	2370	570		kFck	18.00		Use Go	al See	ek on)	K-goal 8	k fc-goa	I		
32	N = 0	422	0	0	260		Х	309.1					0	0			
	Min	208	-907	-1982	0		fc	18.00		X-goal	=	309.1		fc-goal	=	18.00]

SERVICE CAPACITY TABLE

Axial (N kN) with Moment (M kNm) or Shear (V kN)

k1

Note

This table cannot be edited directly. It reads values from the first table on the next sheet

W =	0.2	Ctrs	=	150	mm	As2	=	0.50	As1	Fck	40	Н	600	CC	1.5	LF	1.35
Dia	Cov		4	0			5	0			6	60			7	' 0	
Dia	000	М	Ν	Ν	V	М	Ν	Ν	V	М	Ν	Ν	V	М	Ν	Ν	V
	Max	616	2903	2370	512	614	2947	2370	504	612	2981	2370	496	609	3006	2370	487
12	N = 0	59	0	0	184	47	0	0	182	39	0	0	179	36	0	0	177
	Min	36	-86	-1328	0	28	-70	-1335	0	23	-60	-1342	0	20	-53	-1350	0
	Max	650	2650	2370	511	644	2720	2370	502	638	2777	2370	494	633	2822	2370	486
16	N = 0	120	0	0	184	96	0	0	181	83	0	0	179	76	0	0	176
	Min	68	-204	-1330	0	53	-168	-1337	0	43	-144	-1344	0	37	-130	-1351	0
	Max	703	2399	2370	520	691	2496	2370	513	680	2579	2370	505	670	2644	2370	497
20	N = 0	206	0	0	194	166	0	0	193	149	0	0	191	135	0	0	189
	Min	113	-377	-1413	0	88	-312	-1426	0	72	-267	-1440	0	62	-246	-1455	0
	Max	791	2310	2370	549	769	2401	2370	541	750	2467	2370	534	732	2512	2370	526
25	N = 0	332	0	0	225	294	0	0	223	262	0	0	221	235	0	0	219
	Min	177	-642	-1643	0	146	-560	-1659	0	118	-480	-1676	0	104	-448	-1693	0
	Max	942	2034	2370	587	903	2192	2370	578	869	2310	2370	570	838	2396	2370	562
32	N = 0	520	0	0	264	466	0	0	262	422	0	0	260	386	0	0	257
	Min	271	-1045	-1944	0	234	-957	-1963	0	208	-907	-1982	0	182	-846	-2002	0
	Max	1162	1568	2370	626	1093	1821	2370	617	1035	2010	2370	608	985	2150	2370	600
40	N = 0	823	0	0	306	719	0	0	303	638	0	0	300	573	0	0	297
	Min	409	-1659	-2264	0	344	-1485	-2287	0	301	-1387	-2310	0	268	-1317	-2333	0

EC2 DESIGN TOOL

CAPACITY CHARTS AND TABLES

Howes Atkinson Crowder LLP Copyright © 2009 HAC

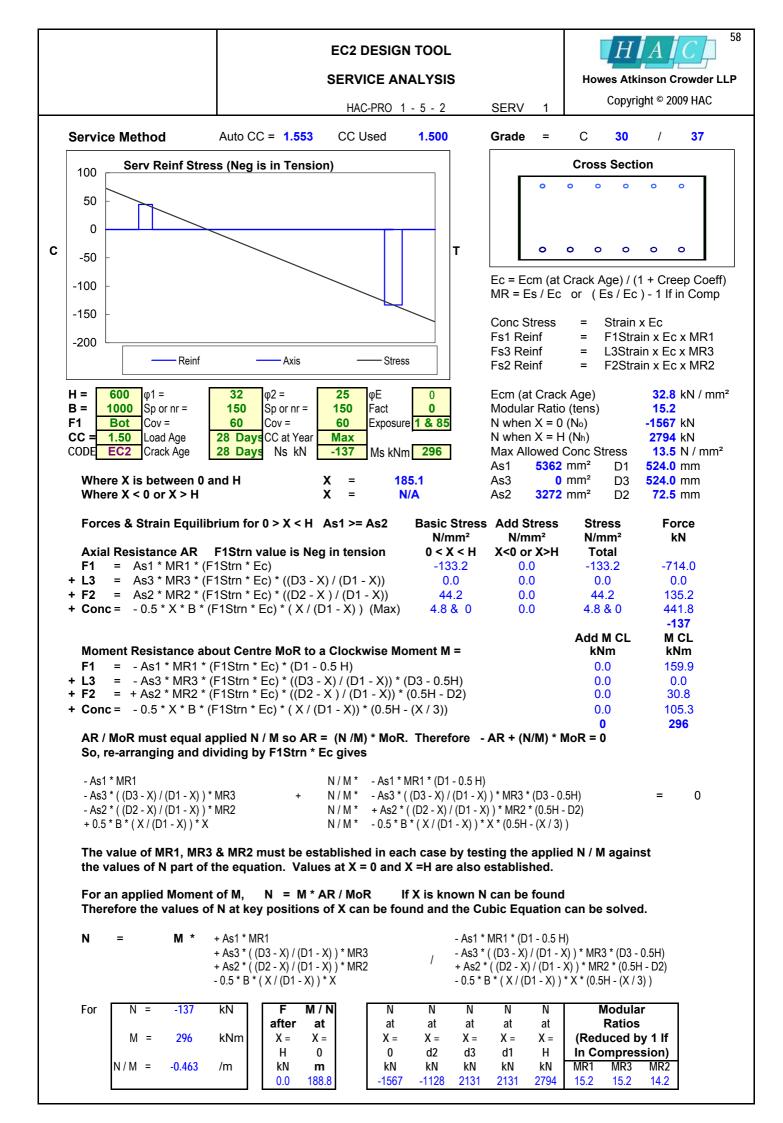
k1 0.800

HAC-PRO 1 - 5 - 2

SERVICE (CAPACITY	TABLES
-----------	----------	--------

Axial (N kN) with Moment (M kNm) or Shear (V kN)

Tables


3

																L	Default
W =	0.2	Ctrs	=	150	mm	As2	=	0.50	As1	Fck	40	Н	600	CC	1.5	LF	1.35
Dia	Cov		4	0			5	0			6	0			7	' 0	
Dia	000	М	Ν	Ν	V	М	Ν	Ν	V	М	Ν	Ν	V	М	Ν	Ν	V
	Max	616	2903	2370	512	614	2947	2370	504	612	2981	2370	496	609	3006	2370	487
12	N = 0	59	0	0	184	47	0	0	182	39	0	0	179	36	0	0	177
	Min	36	-86	-1328	0	28	-70	-1335	0	23	-60	-1342	0	20	-53	-1350	0
	Max	650	2650	2370	511	644	2720	2370	502	638	2777	2370	494	633	2822	2370	486
16	N = 0	120	0	0	184	96	0	0	181	83	0	0	179	76	0	0	176
	Min	68	-204	-1330	0	53	-168	-1337	0	43	-144	-1344	0	37	-130	-1351	0
	Max	703	2399	2370	520	691	2496	2370	513	680	2579	2370	505	670	2644	2370	497
20	N = 0	206	0	0	194	166	0	0	193	149	0	0	191	135	0	0	189
	Min	113	-377	-1413	0	88	-312	-1426	0	72	-267	-1440	0	62	-246	-1455	0
	Мах	791	2310	2370	549	769	2401	2370	541	750	2467	2370	534	732	2512	2370	526
25	N = 0	332	0	0	225	294	0	0	223	262	0	0	221	235	0	0	219
	Min	177	-642	-1643	0	146	-560	-1659	0	118	-480	-1676	0	104	-448	-1693	0
	Max	942	2034	2370	587	903	2192	2370	578	869	2310	2370	570	838	2396	2370	562
32	N = 0	520	0	0	264	466	0	0	262	422	0	0	260	386	0	0	257
	Min	271	-1045	-1944	0	234	-957	-1963	0	208	-907	-1982	0	182	-846	-2002	0
	Max	1162	1568	2370	626	1093	1821	2370	617	1035	2010	2370	608	985	2150	2370	600
40	N = 0	823	0	0	306	719	0	0	303	638	0	0	300	573	0	0	297
	Min	409	-1659	-2264	0	344	-1485	-2287	0	301	-1387	-2310	0	268	-1317	-2333	0

W =	0.15	Ctrs	=	150	mm	As2	=	0.50	As1	Fck	40	Н	600	CC	1.5	LF	1.35
Dia	Cov		4	.0			5	i 0			6	60			7	' 0	
Dia	000	М	Ν	Ν	V	М	Ν	Ν	V	М	Ν	Ν	V	М	Ν	Ν	V
	Max	628	3186	2370	512	626	3226	2370	504	623	3255	2370	496	621	3273	2370	487
12	N = 0	44	0	0	184	35	0	0	182	29	0	0	179	27	0	0	177
	Min	27	-64	-1328	0	21	-53	-1335	0	17	-45	-1342	0	15	-40	-1350	0
	Max	659	2976	2370	511	654	3041	2370	502	648	3091	2370	494	643	3128	2370	486
16	N = 0	90	0	0	184	72	0	0	181	62	0	0	179	57	0	0	176
	Min	51	-153	-1330	0	40	-126	-1337	0	33	-108	-1344	0	28	-98	-1351	0
	Max	706	2775	2370	520	695	2867	2370	513	685	2940	2370	505	676	2995	2370	497
20	N = 0	155	0	0	194	124	0	0	193	112	0	0	191	101	0	0	189
	Min	85	-283	-1413	0	66	-234	-1426	0	54	-200	-1440	0	47	-184	-1455	0
	Max	783	2660	2370	549	764	2734	2370	541	747	2783	2370	534	731	2828	2370	526
25	N = 0	262	0	0	225	221	0	0	223	197	0	0	221	177	0	0	219
	Min	140	-506	-1643	0	110	-420	-1659	0	89	-360	-1676	0	78	-336	-1693	0
	Max	916	2497	2370	587	882	2629	2370	578	852	2721	2370	570	825	2782	2370	562
32	N = 0	425	0	0	264	383	0	0	262	350	0	0	260	319	0	0	257
	Min	222	-858	-1944	0	190	-781	-1963	0	156	-682	-1982	0	136	-634	-2002	0
	Max	1106	2195	2370	626	1047	2403	2370	617	997	2552	2370	608	954	2656	2370	600
40	N = 0	657	0	0	306	578	0	0	303	516	0	0	300	467	0	0	297
	Min	330	-1337	-2264	0	282	-1217	-2287	0	249	-1147	-2310	0	223	-1096	-2333	0

W =	0.1	Ctrs	=	150	mm	As2	=	0.50	As1	Fck	40	Н	600	CC	1.5	LF	1.35
Dia	Cov		4	0			5	0			6	0			7	' 0	
Dia	000	М	Ν	Ν	V	М	Ν	Ν	V	М	Ν	Ν	V	М	Ν	Ν	V
	Max	638	3548	2370	512	635	3580	2370	504	632	3600	2370	496	630	3608	2370	487
12	N = 0	29	0	0	184	23	0	0	182	19	0	0	179	18	0	0	177
	Min	18	-43	-1328	0	14	-35	-1335	0	12	-30	-1342	0	10	-27	-1350	0
	Max	667	3393	2370	511	661	3447	2370	502	656	3486	2370	494	651	3509	2370	486
16	N = 0	60	0	0	184	48	0	0	181	41	0	0	179	38	0	0	176
	Min	34	-102	-1330	0	27	-84	-1337	0	22	-72	-1344	0	19	-65	-1351	0
	Max	707	3253	2370	520	697	3332	2370	513	688	3389	2370	505	679	3427	2370	497
20	N = 0	103	0	0	194	83	0	0	193	74	0	0	191	68	0	0	189
	Min	56	-189	-1413	0	44	-156	-1426	0	36	-133	-1440	0	31	-123	-1455	0
	Max	774	3084	2370	549	757	3192	2370	541	741	3275	2370	534	726	3334	2370	526
25	N = 0	175	0	0	225	147	0	0	223	131	0	0	221	118	0	0	219
	Min	93	-338	-1643	0	73	-280	-1659	0	59	-240	-1676	0	52	-224	-1693	0
	Мах	887	3046	2370	587	858	3140	2370	578	832	3197	2370	570	809	3226	2370	562
32	N = 0	317	0	0	264	274	0	0	262	240	0	0	260	213	0	0	257
	Min	162	-625	-1944	0	127	-520	-1963	0	104	-455	-1982	0	91	-423	-2002	0
	Max	1046	2917	2370	626	997	3068	2370	617	956	3166	2370	608	919	3223	2370	600
40	N = 0	491	0	0	306	437	0	0	303	394	0	0	300	355	0	0	297
	Min	250	-1016	-2264	0	207	-894	-2287	0	174	-799	-2310	0	150	-737	-2333	0

				EC	2 DESI	GN TO	DOL				H	A	C
			CAPA	CITY	CHAR		ND TA	BLES		Hov	ves Atki	nson C	rowder LL
				Н	AC-PRO	1 - 5	- 2	Table	s 4		Copyrig	ght © 20	09 HAC
Crack Width Form	nulae a	and Derivat	ion of	Chart	s and	Tables	5	Ref EN 1992	2-1-1 Cla	ause 7.	3.4 & N	lational	Annex
W = (Crack Spaci	ng = Sri	max) x	(Basic	Strain	Due to	Applie	d Force	es - Strain D	ue to Co	oncrete	Stiffen	ing)	
= ((k3 * Cov) + (k1 * k2 *	* k 4 * φ / ρ _{p,e}	ff <mark>))</mark> * ((F	s1 / E	<mark>s)</mark> - ((Kt	* fct,eff	ρp.eff)	/ Es) - (Kt * fe	ct,eff * MF	R / Es))		
= ((3.4*Cov) + (k1*0.5*	0.425*φ*B*T	eff /As1)) * ((Fs1/Es)	- ((0.4 [,]	fct,eff*B	s*Teff /As1))/E	Es) - (0.4	4*fct,eff*	MR/Es)))	
With the proviso that		(0.4 * fct,eff *							0.4 Fs			,	
Fs1 = (W * Es / ((<i>,</i> , ,				Teff / As	1) + (0	.4 * fct.e	ff * MR))
Basic Stress	=		Es / Spa				((0.1	+		ing Str			//
Es = Modulu		-	Teff	=				Depth	k 1	=	Bond F		
Ec = Modulu MR = Es / (E		onc Creep))	Kt fct,eff	=	Long T fctm28			0.4 sile Strength	k2 Fs1	=	0.5 Fo F1 Ter		
Teff = Min Of		(H - X) / 3		or		2.5 * (Cov +	Dia / 2) =	190		or		H/2
Maximum F1 bar ce		. ,	+ Dia / 2		i.e. foi	,		mm Dia &		mm C	over =	330	mm
Reinforcement Data	_		Equiv						Equiv				
Reads Data From sh		F1 Bars	φ1	COVI	Ctrs	d1	As1	F2 Bars	φ2	C0v2	Ctrs	d2	As2
Single Bars Only	L	32	32.0	60	150	524	5361.7	32	32.0	60	300	76.0	2680.8
Fs1 is limited by the Max Conc Stress is li			k value.			Fs1ma Fcmax		0.70 x 0.45 x	500 40			N/mm ² N/mm ²	
Key Values	Min	At At	7		If N =	0, X is	found	by the follow	wing Qu	adratio	c Equat	ion.	
	50 0.2X	N = fc = 0 kFck			0.5*B	X^2 +	· ((As1	*MR)+(As2*((MR-1)))	х			
X 0.0 WEs kN/mm 40	50 40	200.9 309. 1 40			+ ((-A	s1*D1*	MR)+(-	-As2*D2*(MR	1))	= 0	X =	20	0.9
Srmax mm 397	390	339 302	2		At k F	ck - V	alues F	From Cubic,	Quadra	tic & S	imple E	Equation	ons
Basic N/mm² 101 Stiff N/mm² 67	103 68	118 132 55 45			Teff =	(H - X)	/3=	96.9	5		X =	30	9.1
Fs1 N/mm ² 168	170	173 178	3			If Stiffe	ening s	tress is limite	d to 0.4	Fs1	X =	28	4.8
Conc N/mm ² 0.00	1.27	7.57 18.00			Teff =					- 1	X =		/A
MR1 Factor 14.2 MR2 Factor 14.2	14.2 14.2	14.2 14.2 13.2 13.2				ii Sune	ening s	tress is limite		-si Jsed	X = =		/A 9.1
F1Strn x Ec 11.8	12.0	12.2 12.5											
Where Capacity is 0	Control	lled by Crac	k Width	& Fs	max & (Concre	te Stre						A.L
Axial Resistance AF	R F1S	Strn value is	-ve wh	en in t	tension	kN		X = 0	X = 50		At N = 0		At kFck
F1 As1 * F1Strn				* 140	•			-901	-914		-926		-952
F2 As2 * F1Strn Conc - 0.5 * X * B *					2			-65 0	-25 32		166 760		480 2782
		,	. ,				Ν	-966	-907		0		2310
Moment Resistance F1 - As1 * F1Stri				lockw	vise Mor	nent k	Nm	201.8	204.7		207.5		213.3
F2 + As2 * F1Str) * MI	R2 * (0.5	5H - D2)	-14.6	-5.62		37.27		107.6
Conc - 0.5 * X * B *							,	0.0	9.0		177.1		548.0
							М	187.2	208.1]	421.8		868.8
Where X > = k Fck li	imit an	d Capacity i	s Contr	olled	by Com	press	on - S	elected Valu X =	es X =		X =		X =
Axial Resistance AF	R F1	Strn value is	s -ve wh	en in	tensior	n kN		x = 309.1	A = 406.1		503		600
F1 - As1 * MR ²	1 * k * I	Fck * (D1 - X) / X					-952	-398		-57.1		161.3
F2 - As2 * MR2		Fck * (D2 -	X)/X					480.2	517.6		540.6		556.1
Conc 0.5 * X * B *	Conc							2782	3655		4527		5400
Moment Resistance	ahout	Centre Mo	? to 2 C	lockw	ise Mo	nont k	N Nm	2310	3775		5011		6117
F1 - As1 * MR ²								213.3	89.1		12.78		-36.1
F2 + As2 * MR								107.6	115.9		121.1		124.6
		ck * (0.5H -			, .			548	601.7		599.1		540

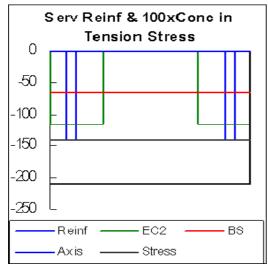
		EC2 DESIGN TO	OL		HIA	
		SERVICE ANALY	SIS		Howes Atkinso	on Crowder L
		HAC-PRO 1 - 5 -	2 SE	RV 2	Copyright	© 2009 HAC
Derivation of Key Valu	ues					
The following shows the r The program values can b As3, Centroid3, φ 3c, L3 & φ 1 = bars near Face 1, φ	be checked using & d3 refer to bars	g the equations below (wi in 3rd Layer (L3) and inc	here Excel no cludes column	tation is used side bars.		,
BF = Extra Bars Bundl Layer 3 Extra Bars Factor		0 = No Bundle Lgap = Layer 3 wit	1 = Bundle h Gap in mm		2 = Bundle S1 = Col S	
a & b Refer to Alt Bar Dia If same Dia, φa = φb	IS	First Alt Bar Second Alt Bar Extra Bars Factor	a b	φ1 32 32	φ2 25 25	φΕ 0 0 0
Use q1 BF or q2 BF as a	appropriate	Extra Bars Bundle F	actor BF	0	0	0
Centroid of Bar Group M	Measured from \$	Start of Bars & Away fro	om Relevant I	Face		
φ1 Centroid (BF = 0) = φ1 Centroid (BF > 0) =	= 0.5 * (φ1a³ +	- φ1b³) / (φ1a² + φ1b²)			ρEa² + BF*φEb²)
φ3 Centroid (Extra Bar F	actor = Lgap or S	S1) = 0.5	* (φEa³ + φEb	³) / (φEa² + α	pEb²)	
φ2 Centroid (As2 > 0 & B φ2 Centroid (As2 = 0 & B					BF*φEa² + BF'	*φEb²)
Reinforcement Areas	-2 + (a1b2) + 0.40) * (N=4 == D ((Creating 1)		
As1 = $\pi x (0.125 * (\phi 1a))$	a-+ψ10-)+0.12					
As2 - (Extra Dar Fasta					ing(1)	
As3 = (Extra Bar Facto (Extra Bar Facto		= π * 0.125 * (φEa ² = π * 0.125 * (φEa ²	+ φEb²) * (Nr1		ing1)	
(or = S1)	= π * 0.125 * (φEa ² = π * 0.125 * (φEa ²	+ φEb²) * (Nr1 + φEb²) * 2	l or B / Spac	ing1)	
Extra Bar Facto	or = S1) a² + φ2b²) + 0.12	= π * 0.125 * (φEa ² = π * 0.125 * (φEa ² 25 * (BF*φEa ² + BF*φEb ²)	+ φEb²) * (Nr1 + φEb²) * 2	l or B / Spac	ing1)	
(Extra Bar Facto As2 = π * (0.125 * (φ2a φ Composite (Equivale φ1c (BF = 0) = (4)	or = S1) $a^{2} + \phi 2b^{2} + 0.12$ ont Similar Bar S $(\phi 1a^{2} + \phi 1b^{2}) / 2$	= $\pi * 0.125 * (\phi Ea^2)$ = $\pi * 0.125 * (\phi Ea^2)$ 25 * (BF* $\phi Ea^2 + BF*\phi Eb^2$) Size = ϕc)	+ φEb²) * (Nr1 + φEb²) * 2)) * (Nr2 or B /	l or B / Spac	ing1)	
$(Extra Bar Factor)$ $As2 = \pi * (0.125 * (\varphi2a))$ $\phi Composite (Equivale)$ $\phi 1c (BF = 0) = (\varphi 1c (BF > 0)) = (\varphi 1c (BF $	or = S1) $a^{2} + \phi 2b^{2} + 0.12$ ont Similar Bar S $(\phi 1a^{2} + \phi 1b^{2}) / 2$ $(\phi 1a^{2} + \phi 1b^{2} + B)$	= $\pi * 0.125 * (\phi Ea^2)$ = $\pi * 0.125 * (\phi Ea^2)$ 25 * (BF* $\phi Ea^2 + BF*\phi Eb^2$) Size = ϕc) 2) ^ 0.5 3F $\phi Ea^2 + BF\phi Eb^2$) / (2 + 2)	+ φEb²) * (Nr1 + φEb²) * 2)) * (Nr2 or B / 2BF)) ^ 0.5	l or B / Spac	ing1)	
(Extra Bar Factor As2 = π * (0.125 * (φ 2a) φ Composite (Equivale) φ 1c (BF = 0) = (φ 1c (BF > 0) = (φ 3c (Extra Bar Factor = L) φ 2c (As2 > 0 & BF = 0) =	or = S1) $a^{2} + \phi 2b^{2}) + 0.12$ ont Similar Bar S $(\phi 1a^{2} + \phi 1b^{2}) / 2$ $(\phi 1a^{2} + \phi 1b^{2} + B)$.gap or S1) = $((\phi 2a^{2} + \phi 2b^{2}))^{2}$	$= \pi * 0.125 * (\phi Ea^{2})$ $= \pi * 0.125 * (\phi Ea^{2})^{2}$ $\Rightarrow (BF*\phi Ea^{2} + BF*\phi Eb^{2})^{2}$ $\Rightarrow (BF*\phi Ea^{2} + BF*\phi Eb^{2}) / (2 + 2)^{2}$ $= ((\phi Ea^{2} + \phi Eb^{2}) / 2)^{2}$	+ φEb²) * (Nr1 + φEb²) * 2)) * (Nr2 or B / 2BF)) ^ 0.5) ^ 0.5	l or B / Spac	ing1)	
(Extra Bar Facto As2 = π * (0.125 * (φ 2a ϕ Composite (Equivale) φ 1c (BF = 0) = (φ 1c (BF > 0) = (φ 3c (Extra Bar Factor = L	$pr = S1)$ $a^{2} + \varphi 2b^{2}) + 0.12$ $ent Similar Bar S$ $((\varphi 1a^{2} + \varphi 1b^{2}) / 2$ $(\varphi 1a^{2} + \varphi 1b^{2} + B)$ $gap or S1)$ $= ((\varphi 2a^{2} + \varphi 2b^{2})$ $= ((\varphi 2a^{2} + \varphi 2b^{2})$	$= \pi * 0.125 * (\phi Ea^{2})$ $= \pi * 0.125 * (\phi Ea^{2})^{2} + BF^{*}\phi Ea^{2} + BF^{*}\phi Eb^{2})^{2}$ Size = ϕc) $= \phi c$) $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)^{2})^{2} + BF^{*}\phi Ea^{2} + BF^{*}\phi Eb^{2}) / 2$	+ φEb²) * (Nr1 + φEb²) * 2)) * (Nr2 or B / 2BF)) ^ 0.5) ^ 0.5	l or B / Spac	ing1)	
(Extra Bar Factor As2 = π * (0.125 * (φ 2a φ Composite (Equivale) φ 1c (BF = 0) = (φ 1c (BF > 0) = (φ 1c (BF > 0) = (φ 3c (Extra Bar Factor = L φ 2c (As2 > 0 & BF = 0) = φ 2c (As2 > 0 & BF > 0) = (φ 3c (Extra Bar Factor = L	or = S1) a ² + φ 2b ²) + 0.12 ont Similar Bar S $((\varphi 1a^2 + \varphi 1b^2) / 2)$ $((\varphi 1a^2 + \varphi 1b^2) / 2)$ $((\varphi 1a^2 + \varphi 1b^2 + B))$ -gap or S1) = $((\varphi 2a^2 + \varphi 2b^2)^2)$ = $((\varphi 2a^2 + \varphi 2b^2)^2)^2$ = $((\varphi 2a^2 + \varphi 2b^2)^2)^2$ = $((\varphi 1a^2 + $	$= \pi * 0.125 * (\phi Ea^{2})$ $= \pi * 0.125 * (\phi Ea^{2})^{2}$ Size = ϕc) $= (\phi Ea^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2}$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)^{2})^{2} + BF^{*}\phi Ea^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2}$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)^{2})^{2} + BF^{*}\phi Ea^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2}$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)^{2})^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2}$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)^{2})^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2}$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)^{2})^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2}$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)^{2})^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2}$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)^{2})^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2}$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)^{2})^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2}$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)^{2})^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2}$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)^{2})^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2}$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)^{2})^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2} + BF^{*}\phi Eb^{2} + BF^{*}\phi Eb^{2}) / (2 + 2)^{2} + BF^{*}\phi Eb^{2} + BF^{$	+ φEb²) * (Nr1 + φEb²) * 2)) * (Nr2 or B / 2BF)) ^ 0.5) ^ 0.5	l or B / Spac	ing1) Centroid3 16.0 16.0	Centroid 12.5 12.5
(Extra Bar Factor As2 = π * (0.125 * (φ 2a φ Composite (Equivale) φ 1c (BF = 0) = (φ φ 1c (BF > 0) = (φ φ 3c (Extra Bar Factor = L φ 2c (As2 > 0 & BF = 0) = φ 2c (As2 > 0 & BF > 0) = φ 2c (As2 = 0 & BF > 0) = φ 2c (As2 = 0 & BF > 0) =	or = S1) a ² + φ 2b ²) + 0.12 ent Similar Bar S ($(\varphi$ 1a ² + φ 1b ²) / 2 ($(\varphi$ 1a ² + φ 1b ² + B _gap or S1) = ((φ 2a ² + φ 2b ² = ((φ 2a ² + φ 2b ² = ((φ 2a ² + φ 2b ² = ((BF* φ Ea ² + E mm If As3 = 0, are away from Fa Face 2 If As3 = 0, d3 = roid d2 =	$= \pi * 0.125 * (\phi Ea^{2})$ $= \pi * 0.125 * (\phi Ea^{2})$ $Size = \phi c)$ $(\phi Ea^{2} + BF*\phi Eb^{2}) / (2 + 2)$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2))$ $(\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2))$ $(\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)$ $= ((\phi Ea^{2} + \phi Eb^{2}) / (2 + 2))$ $(\phi Ea^{2} + \phi Eb^{2}) / (2 + 2)$ $(\phi Ea^{2} + \phi Eb^{2}) $	+ φEb ²) * (Nr + φEb ²) * 2) * (Nr2 or B / 2BF)) ^ 0.5) ^ 0.5 (2 + 2BF)) ^ (Program).5 Centroid1	Centroid3 16.0	12.5
(Extra Bar Factor As2 = π * (0.125 * (φ 2a φ Composite (Equivaler φ 1c (BF = 0) = (φ 1c (BF > 0) = (φ 1c (BF > 0) = (φ 2c (As2 > 0 & BF = 0) = (φ 2c (As2 > 0 & BF = 0) = (φ 2c (As2 > 0 & BF = 0) = (φ 2c (As2 > 0 & BF > 0) = (φ 2c (As2 = 0 & BF > 0) = (As2 & B	or = S1) a ² + φ 2b ²) + 0.12 ent Similar Bar S (φ 1a ² + φ 1b ²) / 2 (φ 1a ² + φ 1b ² + B .gap or S1) = ((φ 2a ² + φ 2b ² = ((φ 2a ² + φ 2b ² = ((φ 2a ² + φ 2b ² = ((φ F* φ Ea ² + E mm If As3 = 0, d3 = Gare away from Fa Face 2 If As3 = 0, d3 = roid d2 = LGap - As3 Cent m ² led bars as per a	= $\pi * 0.125 * (\phi Ea^2)$ = $\pi * 0.125 * (\phi Ea^2)$ 25 * (BF*φEa ² + BF*φEb ²) Size = ϕc) 2) ^ 0.5 3FφEa ² + BFφEb ²) / (2 + 2) = (($\phi Ea^2 + \phi Eb^2$) / (2 + 2) = (($\phi Ea^2 + \phi Eb^2$) / (2 + 2) 2) / 2) ^ 0.5 ² + BF* $\phi Ea^2 + BF*\phi Eb^2$) / (2BF)) ^ 0.5 Centroid3 = Centroid1 ace1 d1 = Cov2 + As2Centroid troid or H/2 or d1 appropriate BF	+ φEb ²) * (Nr ⁴ + φEb ²) * 2) * (Nr2 or B / 2BF)) ^ 0.5) ^ 0.5 (2 + 2BF)) ^ 0 Program Check Program).5 Centroid1 16.0 16.0 d1 524.0	Centroid3 16.0 16.0 d3 524.0	12.5 d2 72.5

			EC2 DESI	GN TOOL			H	$A \ C$
			SERVICE	ANALYSI	6	Но	wes Atki	nson Crowder Ll
			HAC-PRO) 1 - 5 - 2	SERV	3	Copyrig	pht © 2009 HAC
Mult all By (D1 - X)								
-(As1 * MR1) * (D1 - X) -(As3 * (D3 - X)) * MR3 -(As2 * (D2 - X)) * MR2 +(0.5 * B) * X * X	+ + + +	N / M N / M N / M N / M	* - (As3 * + (As	3 * (D3 - X)) s2 * (D2 - X))	- (0.5*H)) * (D1 - > * MR3 * (D3 - (0.5 * MR2 * ((H/2) - * ((0.5*H) - (X/3))	([*] H))	=	0
Multiply Out								
- As1 * MR1 * D1 + As1 * M - As3 * D3 * MR3 + As3 * X + As2 * X * MR2 - As2 * D2 + 0.5 * B * X^2	(* MR3		-	Data H B 00 1000	As1 As3 5362 0	As2 D1 3272 524	D3 524	D2 N/M 72.5 -0.0004
+								
= 0 Which is re-arranged t	to give the	Cubic Fa	ation		Using	g Constants		Using Xo
+ (N/M * 1/3 * 0.5 * B)	to give the				Using	-0.08	X^3	-488847.06
						-0.06	Λ 3	-400047.00
+ - (N/M * 0.5 * B * 0.5 * H) + (0.5 * B)					69.42567568 500.00	569.4256757	X^2	19499971.9
+								
+ (As1 * MR1) + (As3 * MR3) + (As2 * MR2) + (N/M * As1 * MR1 * D1) - (+ (N/M * As3 * MR3 * D3) - (+ (N/M * As2 * MR2 * D2) - ((N/M * As3 * N	/IR3 * 0.5 * H			81641.47 0.00 46557.51 -8464.23 0.00 4902.30	124637.05	X	23064583.3
+								
	3) + (N/M * As	s3 * MR3 * 0.	5 * H * D3)		-42780131.03 0.00 -3375419.28 4435258.99 0.00 -355416.83	-42075708.15		-42075708.
+ - (As1 * D1 * MR1) - (As3 * D3 * MR3) - (As2 * D2 * MR2) - (N/M * As1 * MR1* D1 * D1 - (N/M * As3 * MR3 * D3 * D3	3) + (N/M * As 2) + (N /M * /	s3 * MR3 * 0.1 As2 * MR2 * (5 * H * D3)).5 * H * D2)	Хо	0.00 -3375419.28 4435258.99 0.00	-42075708.15 185.1	= mm	-42075708. 0.000
+ - (As1 * D1 * MR1) - (As3 * D3 * MR3) - (As2 * D2 * MR2) - (N/M * As1 * MR1* D1 * D1 - (N/M * As3 * MR3 * D3 * D2 - (N/M * As2 * MR2 * D2 * D2	3) + (N/M * As 2) + (N /M * / c / Quadrat	s3 * MR3 * 0. As2 * MR2 * (tic Equatio	5 * H * D3)).5 * H * D2) In Solution	Хо	0.00 -3375419.28 4435258.99 0.00 -355416.83		=	
+ - (As1 * D1 * MR1) - (As3 * D3 * MR3) - (As2 * D2 * MR2) - (N/M * As1 * MR1* D1 * D1 - (N/M * As3 * MR3 * D3 * D2 - (N/M * As2 * MR2 * D2 * D2 From Cubic	3) + (N/M * As 2) + (N /M * / c / Quadrat becomes a	s3 * MR3 * 0. As2 * MR2 * (t ic Equatic) Quadratic	5 * H * D3) 0.5 * H * D2) In Solution So X = MR)+(As2*(MR- Divic		0.00 -3375419.28 4435258.99 0.00 -355416.83	185.1	= mm	0.000
+ - (As1 * D1 * MR1) - (As3 * D3 * MR3) - (As2 * D2 * MR2) - (N/M * As1 * MR1* D1 * D1 - (N/M * As3 * MR3 * D3 * D2 - (N/M * As2 * MR2 * D2 * D2 From Cubic For N = 0, the equation	3) + (N/M * As 2) + (N /M * / c / Quadrat becomes a	s3 * MR3 * 0. As2 * MR2 * (t ic Equatic a Quadratic 1*MR)+(As3*	5 * H * D3) D.5 * H * D2) In Solution So X = MR)+(As2*(MR- Divic (2*(4978152 Divic	-1)))^2 - 4*0.5 ded By	0.00 -3375419.28 4435258.99 0.00 -355416.83	185.1)+(-As3*D3*MR)	= mm	0.000
+ - (As1 * D1 * MR1) - (As3 * D3 * MR3) - (As2 * D2 * MR2) - (N/M * As1 * MR1* D1 * D1 - (N/M * As3 * MR3 * D3 * D3 - (N/M * As2 * MR2 * D2 * D2 From Cubic For N = 0, the equation ((As1*MR)+(As3*MR)+(As2*(I	3) + (N/M * As 2) + (N /M * / c / Quadrat becomes a MR-1)))+(((As	s3 * MR3 * 0. As2 * MR2 * (t ic Equatic a Quadratic 1*MR)+(As3*	5 * H * D3) D.5 * H * D2) In Solution So X = MR)+(As2*(MR- Divic (2*(1978152 Divic 1(-1)))^2 - 4*0.5 ded By 0.5*B) - ded By	0.00 -3375419.28 4435258.99 0.00 -355416.83 = *B*((-As1*D1*MR	185.1)+(-As3*D3*MR)	= mm)+(-As2*D2	

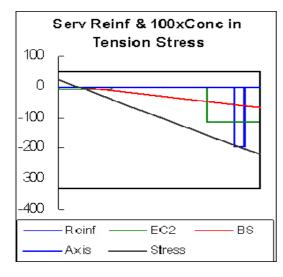
			EC2 [DESIGN T	OOL				H	A	IC –
			SERV		YSIS			Но	wes Atk	inson C	rowder
			HAC	-PRO 1 -	5 - 2	SERV	′ 4		Copyri	ight © 20	009 HAC
Solutio	nof a X^3 -	+ bX^2 + c	X + d =	0 Using	Iterati	ion or Goa	l Seek	(As1	& As2	2 only)	
	6) * B * N/M			Valid wh	ere O	< X < H					
c = (MR	* B * (1 - (0.5 * H * R1 * As1 + MR2 * As2	2) + ((N/M) * (MR1									
d = -((MR1 * As1 * D1) + (N Ctrs	/IR2 * As2 * D2)) + Ctrs		1 * As1 * D1)	* (D1 - 0	.5H) + (MR2 *	As2 * D2	2) * (D2 ·	· 0.5H))		
Data φ1	Nr Cov1 <50	Nr φ2 Cov2 <50	MR H	В	N kN k		/M Nmm)	D1	D2	As1	As2
32.0	60 150	25.0 60 150	15.2 600	1000	137 2	296 - <mark>0.0</mark> (00463	524	72.5	5362	3272
1	N / M When X	= 0	lf N < N	₀, Set X =	0 & A	dd Additio	onal St	resse	s as St	ep 8	
	= - (As1 + (As	2*(D2/D1)))	/ (As1	* (D1 - 0.5 H) + As2 *	(D2/D1)*(D2 - 0.5l	H))			
	-5814	/ 10980	03 =	-0.0052	95				N∘ =	-1567	kN
2	N / M When X	= H	If N > N	ь, Set X =	H & A	dd Additio	onal St	resse	s as S	tep 9	
	(As1*(MR-1) + As2 / (-As1* (MR-1)*(D					5*B*(H^2/(D1-F	H))*(0.5H	-(H/3)))			
	= 2767847	,	,, ,, ,,	0.0094	,	, ,	<i>// 、</i>	. ,,,	Nh =	2794	kN
3	N / M When X	= D2		If N / M >	Nd2 / M,	,	MR2 =	• MR -1			
	As1 * MR - 0.5 * B	3 * (D2² / (D1 - D2))		- As1 * MR	* (D1 - 0.	5H) - 0.5 * B	* (D2 / (I	D1 - D2)) * D2 * ((0.5H - (E	02 / 3))
	= 75821	/ -1989	3281 =	-0.0038	11	MR2	14.2		Nd2 =	-1128	kN
4	N / M When X	= D1		lf N / M >	Nd1 / M,		MR1 =	• MR-1			
	((As2 * (D2 - D1))	* (MR-1) - (0.5 * B)	* D1^2)/((/	As2 * (D2 - D	1)) * (MR	R-1) * ((H/2) - I	D2) - (0.	5 * B) * [01^2 * ((0	0.5*H) - (D1/3)))
	= -1583087	15 / -2198897	5227 =	0.0071	99	MR1	15.2		N d1 =	2131	kN
5	Equation Cons	stants Using I	MR1 & MR	2 Values							
	a = -0.077139)64 b =	569) c	=	124637		d =	-4	420757	08
6	If $N_0 < N < N_h$,		Iteration u	ntil Equa	tion Va	alue = 0 (S	tart wi	th X =	0.5H)		
	X =	185.05 mm	lf N < No	o Set X =0		lf N =	0, X qu	adratio	; =	201.6	mm
	-488847	+ 19499972	+ 230	64583	+	-420757	08	=		0	
7	Stresses in As	s1 & As2 for 0	< X < H.								
	Fs1 = - MR1*M/(As1 Fs2 = Fs1* ((D2 - X				0.5H-D2)	- 0.5*X*B*(X/((D1-X))*((0.5H-(X/	3)))	-133 41	N/mm² N/mm²
8	Additional Str	esses If N < N	o								
	Ecc = As1 * (0.5H -	- Cov1 - 0.5Dia) - A	As2 * (0.5H - C	ov2 - 0.5Dia2	2) / (As1 +	+ As2)	=	N/A	mm		
	N - No =	N/A kN		Mecc = (N - No)	* er	=	N/A	kNm		
	Extra Fs1 = (N -					N/A	-	N/A	=		N/mm²
	Extra Fs2 = (N -	- No) / (As1 + As	2) + (Mecc	/ (d1 -d2) /	As1 =	N/A	+	N/A	=	N/A	N/mm

				E	C2 [DESIGN	τοοι	-				H	A	$C \square$
				SI	ERV		ALYSI	S			Но	wes Atl	kinson C	crowder L
									SERV	′ 5		Сору	right © 20	009 HAC
9	Additional	Stresses If	'N >	Nh										
	The reinforce area twice, th The calculate	ne equivalent	conc	rete area	a for	reinforce	ment fa	ictor is	reduce	d by 1		-		
	Eccentricity c	of Centroid of	f Com	posite S	ectio	n about (Centre	Line						
	er = As1*MR1*	(0.5H - Cov1 -	0.5φ1)	- As2*MF	R2*(0.	5H - Cov2	- 0.5φ2)	/ (As1*N	1R1+ As2	2*MR2 +	· B*H))		N/A	mm
	Area of Com	posite Sectio	n											
	A = As1*MF	R1 + As2*MR2 ·	+ B * H			N/	Α	mm²						
	Moment of In	ertia about C	Compo	osite Cer	ntroid	i								
		12)+(B*H*Ecc^2 R1*(0.5H-Cov1- R2*(0.5H-Cov2-	-0.5φ1-		As2*M	1R2*(0.5H-	Cov2-0.5	iφ2+Ecc)^2		N/A		mm4	
	N - Nh =	N/A	kN			Mecc =	(N - N	lh) * er		=	N/A	kNm		
	Concrete Stre	ess at Faces	1 & 2	2										
	F1 = (N-Nh) / F2 = (N-Nh) /					N/ N/		- +		I/A I/A	=		N/A N/A	N/mm² N/mm²
	Reinforceme	nt Stresses a	at As1	and As2	2									
	Fs1 = (N-Nh) Fs2 = (N-Nh)								N/A N/A	- +	N/A N/A	=		N/mm² N/mm²
	Concrete For	ces												
	Rect Part Tri Part	Stress N/A N/A	x x	H 600 600	x x	В 1000 1000	x 0.5 Total	= =	F N/A N/A N/A	kN		Ecc a Rect Tri	ibout Ce 0 100	entre mm mm
	Reinforceme	nt Forces												
		Stress		As1					F			Ecc a	ibout Ce	entre
	As1 As2	N/A N/A	x x	5362 3272			Total	=	N/A N/A N/A	kN		As1 As2		mm
	Check Concr	ete Force + I	Reinf	Force =	N - N	۱h			N/A	+	N/A	=	N/A	kN
	Check Mome	ents about Ce	entre l	Equate to	o Zer	ю								
	Concrete	N/A N/A	x x	0 100	 	1000 1000		0 N/A	kNm		Total		N/A	kNm
	Reinf	N/A N/A	x x	224 228	 	1000 1000		N/A N/A	kNm		Total		N/A	kNm

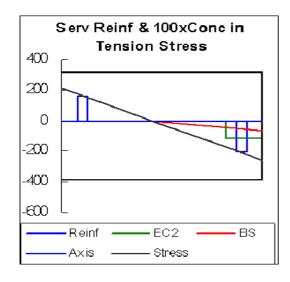
The concrete and reinforcement stresses are calculated about the Composite Centroid The equations are simpler in respect of the reinforcement.

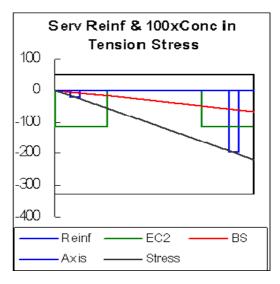

The section must also be in overall equilibrium about the Centre of the Section

As there is no additional moment applied after N = N_h , The resultant Moment must equal Zero.

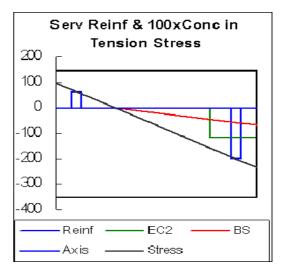


SERVICE ANALYSIS Cont.

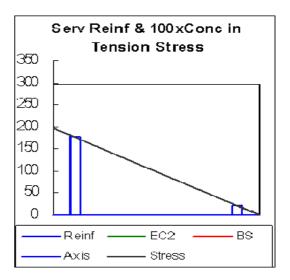

Stress Diagrams Relating to Key Points

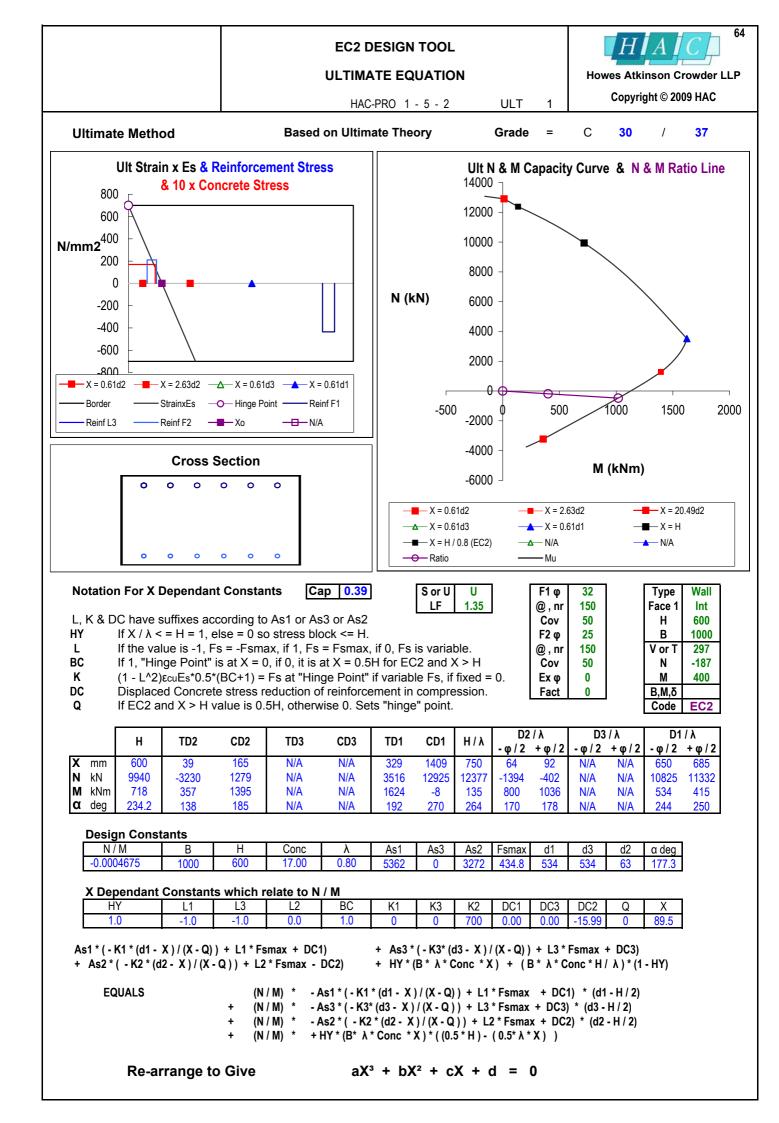


At X = -∞

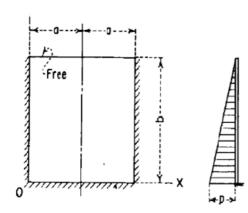


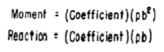
At X = Min 50mm or 0.2H

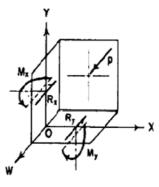




At X = 0

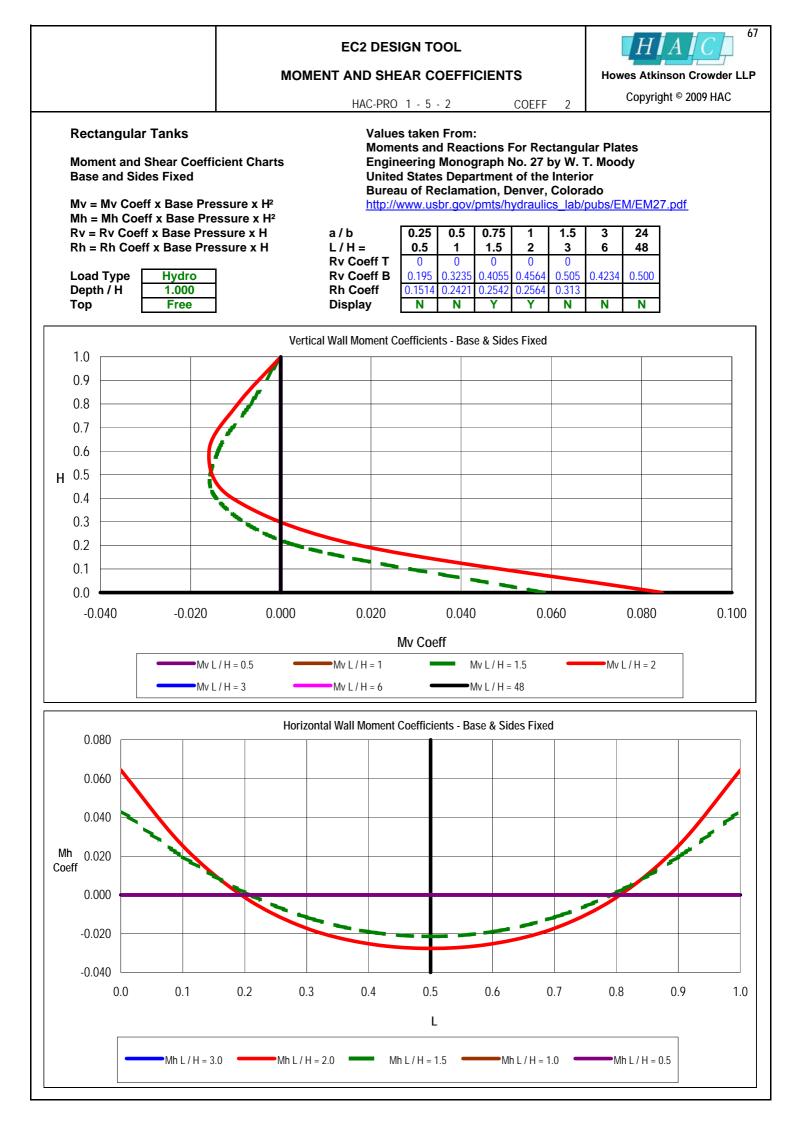

At N = 0





		EC	C2 DESIGN TOOL				H	A	
		ULT	IMATE EQUATION			How	es Atkir	ison (Crowde
			HAC-PRO 1 - 5 - 2	ULT	2		Copyrig	ht © 2	009 HAC
DERIVATIO		NIVERSAL ULTIMATE N	- M EQUATION						
Establish Follo		Values in Bold Blue derive							
	•					Es	200		kN / n
		 This value is fixed by the pr 	-			⊏s			KIN / II
		e strain ɛcu2 Value reduces if	Fcu > 50 N/mm ² Abbre Ssion face unless EC2 and X > H	v Used I		εcu εcuEs	0.0035 700		N / m
Strain x Es valu	ie (i.e. equivaler	nt Reinforcement Stress) at cent	tre for EC2 when X >= H			.5εcuEs	350		N / m
		This is defined in Global values.		•		nax =	435		N / m
Max concrete st	tress either EC2	or BS value but EC2 symbol us	ed (NA act = 0.85)	fc	cd = C	onc =	17.00		N / m
TD where reinf	Tens value is loo	cked = 1/((1+	(Fsmax / Es) / ɛcu)) * D			=	0.616	х	D
	Comp value is lo		i-(Fsmax / Es)) * D			=	2.639	х	D
CeD2 stress va	riable again if E0	C2 & X>H & ((Fsmax*0.5*H) - (0).5*εcuEs*D2))/(Fsmax - (0.5*εcu	Es))*D2		=	20.4	х	D2
N & M values and N & M polar and	nd polar angle values for X /	alue when X = H / λ in order to s / λ at start and finish of F1, L3 &	et the hinge point for EC2 design set moment due to stress block to F2 reinf bars using equivalent so	o zero and quares to e	establis	h if within			
			and CD for F1, L3 & F2 reinforcer =0 and N is negative and increas				ion		
		-	-						
		ables and Create a Universal E	Equation for BS and EC2 constants" which are established	according	to who	no Yicol	na tha N	_ M ~	inve
			ist the angles for the key control						
			leted, re-arranged into a Cubic E						
Check X at bar	locations i.e. D2	ly for the case where X is > H an ? - $φ/2$ to D2 + $φ/2$, D1 - $φ/2$ to I	fixed at -Fsmax (ten) or + Fsmax ad > CeD to see if reinf is variable D1 + $\varphi/2$, D3 - $\varphi/2$ to D3 + $\varphi/2$ to to point Then calculate the F	e again for calculate	L2 and displac	note L2e ed concre	ete deduct		
Check X at bar Enter values int	locations i.e. D2 to equations belo	ly for the case where X is > H an 2 - $\phi/2$ to D2 + $\phi/2$, D1 - $\phi/2$ to I ow to find N & M and N / M at ea	nd > CeD to see if reinf is variable D1 + φ /2, D3 - φ /2 to D3 + φ /2 to ach point. Then calculate the F	e again for calculate Polar Angle	L2 and displaces for a	note L2e ed concre Il key poin	ete deduct ts	tions	(= 0 5H
Check X at bar	locations i.e. D2	ly for the case where X is > H an ? - $φ/2$ to D2 + $φ/2$, D1 - $φ/2$ to I	nd > CeD to see if reinf is variable D1 + $φ/2$, D3 - $φ/2$ to D3 + $φ/2$ to	e again for calculate Polar Angle	L2 and displaces for a	note L2e ed concre Il key poin Fs =0.5ɛ	ete deduct ts	tions m² at λ	
Check X at bar Enter values int Variable	locations i.e. D2 to equations belo BC	ly for the case where X is > H an $2 - \varphi/2$ to D2 + $\varphi/2$, D1 - $\varphi/2$ to I by to find N & M and N / M at ea IF code is EC2 and X > H Otherwise	nd > CeD to see if reinf is variable D1 + $φ/2$, D3 - $φ/2$ to D3 + $φ/2$ to ach point. Then calculate the F virtual hinge at X = 0.5 H	e again for o calculate Polar Angle =	L2 and displaces for al 0 1	note L2e ed concre Il key poin Fs =0.5ε Fs = εcul	ete deduct ts cuEs N/mr Es N/mm2	tions m² at ≯ at X =	
Check X at bar Enter values int Variable	locations i.e. D2 to equations belo	ly for the case where X is > H an $2 - \varphi/2$ to D2 + $\varphi/2$, D1 - $\varphi/2$ to I by to find N & M and N / M at ea IF code is EC2 and X > H	nd > CeD to see if reinf is variable D1 + $φ/2$, D3 - $φ/2$ to D3 + $φ/2$ to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0	e again for o calculate Polar Angle = =	L2 and displac es for al 0	note L2e ed concre Il key poin Fs =0.5ɛ	ete deduct ts cuEs N/mr Es N/mm2 - Fs max	tions m² at) at X =	
Check X at bar Enter values int Variable	locations i.e. D2 to equations belo BC	ly for the case where X is > H an $2 - \varphi/2$ to D2 + $\varphi/2$, D1 - $\varphi/2$ to I by to find N & M and N / M at eac IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3	nd > CeD to see if reinf is variable D1 + φ /2, D3 - φ /2 to D3 + φ /2 to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H	e again for o calculate Polar Angle = = =	L2 and displaces for al 0 1 -1	note L2e ed concre Il key poin Fs =0.5ε Fs = εcul Stress = Stress =	ete deduct ts cuEs N/mr Es N/mm2 - Fs max	tions m² at) at X =	
Check X at bar Enter values int Variable	locations i.e. D2 to equations belo BC L1 or L3	ly for the case where X is > H an $- \varphi/2$ to D2 + $\varphi/2$, D1 - $\varphi/2$ to D bw to find N & M and N / M at eac IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC	hd > CeD to see if reinf is variable D1 + φ /2, D3 - φ /2 to D3 + φ /2 to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H	e again for o calculate Polar Angle = = = = =	L2 and displaces for al 0 1 -1 1 0	note L2e eed concre I key poin Fs =0.5ε Fs = εcut Stress = Stress = Stress is	ete deduct cuEs N/mr Es N/mm2 - Fs max + Fsmax Variable	tions m² at) at X =	
Check X at bar Enter values int Variable	locations i.e. D2 to equations belo BC	ly for the case where X is > H an $(-\phi/2 \text{ to } D2 + \phi/2, D1 - \phi/2 \text{ to } D)$ by to find N & M and N / M at eas IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 value)	nd > CeD to see if reinf is variable D1 + φ/2, D3 - φ/2 to D3 + φ/2 to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2)	e again for o calculate Polar Angle = = = =	L2 and displaces for al 0 1 -1 1 0 -1	note L2e eed concre I key poin Fs =0.5ε Fs = εcul Stress = Stress = Stress is Tens Str	ete deduct cuEs N/mr Es N/mm2 - Fs max + Fsmax Variable ess = - Fs	tions m² at) at X =	0
Check X at bar Enter values int Variable	locations i.e. D2 to equations belo BC L1 or L3	ly for the case where X is > H an $- \varphi/2$ to D2 + $\varphi/2$, D1 - $\varphi/2$ to D bw to find N & M and N / M at eac IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC	nd > CeD to see if reinf is variable D1 + φ/2, D3 - φ/2 to D3 + φ/2 to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2	a again for o calculate Polar Angle = = = = = = =	L2 and displaces for al 0 1 -1 1 0	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress = Stress is Tens Str Comp St	ete deduct cuEs N/mr Es N/mm2 - Fs max + Fsmax Variable ess = - Fs	tions m² at) at X =	0
Check X at bar Enter values int Variable	locations i.e. D2 to equations belo BC L1 or L3 L2	ly for the case where X is > H an $P = \phi/2$ to D2 + $\phi/2$, D1 - $\phi/2$ to I by to find N & M and N / M at eac IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X =	hd > CeD to see if reinf is variable D1 + φ /2, D3 - φ /2 to D3 + φ /2 to hch point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2	a again for calculate Polar Angle = = = = = = = = = =	L2 and displaces for al 0 1 -1 1 0 -1 1 0 -1	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress is Tens Str Comp St Stress is	ete deduct ts cuEs N/mr - Fs max + Fsmax Variable ess = - Fs ress = + F Variable	tions m² at) at X = s max =smax	0
Check X at bar Enter values int Variable	locations i.e. D2 to equations belo BC L1 or L3 L2 DC1	ly for the case where X is > H an $2 - \varphi/2$ to D2 + $\varphi/2$, D1 - $\varphi/2$ to I bw to find N & M and N / M at ear IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X = Displaced concrete stress x F	nd > CeD to see if reinf is variable D1 + φ /2, D3 - φ /2 to D3 + φ /2 to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2 prop of bar in stress block	a again for calculate Polar Angle = = = = = = = = = = = = =	L2 and displaces for al 0 1 -1 1 0 -1 1 0 -1 1 0 0	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress = Stress is Tens Str Comp St Stress is to	ete deduct ts cuEs N/mr - Fs max + Fsmax Variable ess = - Fs ress = + F Variable	tions m ² at) at X = s max =smax -17.00	0 N / mm
Check X at bar Enter values int Variable	locations i.e. D2 to equations belo BC L1 or L3 L2 DC1 DC3	ly for the case where X is > H an $P = \phi/2$ to D2 + $\phi/2$, D1 - $\phi/2$ to I by to find N & M and N / M at ear IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X = Displaced concrete stress x p Displaced concrete stress x p	nd > CeD to see if reinf is variable D1 + φ/2, D3 - φ/2 to D3 + φ/2 to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2 prop of bar in stress block prop of bar in stress block	a again for calculate Polar Angle = = = = = = = = = =	L2 and displaces for al 0 1 -1 1 0 -1 1 0 -1	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress is Tens Str Comp St Stress is	ete deduct ts cuEs N/mr - Fs max + Fsmax Variable ess = - Fs ress = + F Variable	tions m ² at) at X = s max -smax -17.00 -17.00	0 N / mm N / mm
Check X at bar Enter values int Variable	locations i.e. D2 to equations belo BC L1 or L3 L2 DC1 DC3 DC2	ly for the case where X is > H an $P = \phi/2$ to D2 + $\phi/2$, D1 - $\phi/2$ to I bow to find N & M and N / M at ear IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X = Displaced concrete stress x p Displaced concrete stress x p	nd > CeD to see if reinf is variable D1 + φ /2, D3 - φ /2 to D3 + φ /2 to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2 prop of bar in stress block prop of bar in stress block prop of bar in stress block	again for calculate colar Angle = = = = = = = = = = = = = = = =	L2 and displaces for al 0 1 -1 1 0 -1 1 0 0 0 0 0 0	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress is Tens Str Comp St Stress is to to to to	ete deduct ts cuEs N/mr - Fs max + Fsmax Variable ess = - Fs ress = + F Variable	tions m ² at) at X = s max -17.00 -17.00	0 N / mm N / mm
Check X at bar Enter values int Variable	locations i.e. D2 to equations belo BC L1 or L3 L2 DC1 DC3	ly for the case where X is > H an $P = \phi/2$ to D2 + $\phi/2$, D1 - $\phi/2$ to I by to find N & M and N / M at ear IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X = Displaced concrete stress x p Displaced concrete stress x p	nd > CeD to see if reinf is variable D1 + φ /2, D3 - φ /2 to D3 + φ /2 to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2 prop of bar in stress block prop of bar in stress block prop of bar in stress block prop of bar in stress block	again for calculate colar Angle = = = = = = = = = = = = = = = = =	L2 and displaces for al 0 1 -1 1 0 -1 1 0 0 0 0 0 0	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress is Tens Str Comp St Stress is to to to to Ensures	ete deduct ts cuEs N/mr - Fs max + Fsmax Variable ess = - Fs ress = + F Variable	tions m ² at) at X = s max -17.00 -17.00 stress	0 N / mm N / mm N / mm
Check X at bar Enter values int Variable Constants	locations i.e. D2 to equations belo BC L1 or L3 L2 DC1 DC3 DC2	ly for the case where X is > H an $2 - \varphi/2$ to D2 + $\varphi/2$, D1 - $\varphi/2$ to I by to find N & M and N / M at ear IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X = Displaced concrete stress x Displaced concrete stress	nd > CeD to see if reinf is variable D1 + $\varphi/2$, D3 - $\varphi/2$ to D3 + $\varphi/2$ to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2 prop of bar in stress block prop of bar in stress block	a again for calculate colar Angle = = = = = = = = = = = = = = = = = = =	L2 and displaces for al 0 1 -1 1 0 -1 1 0 0 0 0 0 0 1E-07 1	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress is Tens Str Comp St Stress is to to to to Ensures block do	ete deduct ts cuEs N/mr - Fs max + Fsmax Variable ess = - Fs ress = + F Variable the conc es not exc	tions m ² at) at X = s max -smax -17.00 -17.00 -17.00 stress ceed F	0 N / mr N / mr N / mr
Check X at bar Enter values int Variable Constants N = (N / M) * Ma	locations i.e. D2 to equations belo BC L1 or L3 L2 DC1 DC3 DC2 HY	ly for the case where X is > H an $P_{1} = \phi/2$ to D2 + $\phi/2$, D1 - $\phi/2$ to D bow to find N & M and N / M at eac IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X = Displaced concrete stress x Displaced concrete st	nd > CeD to see if reinf is variable D1 + $\varphi/2$, D3 - $\varphi/2$ to D3 + $\varphi/2$ to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2 prop of bar in stress block prop of bar in stress block	again for calculate colar Angle = = = = = = = = = = = = = = = = = = =	L2 and displaces for all 0 1 -1 1 0 -1 1 0 0 0 0 0 1E-07 1 s been	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress is Tens Str Comp St Stress is to to to Ensures block do used for n	ete deduct ts cuEs N/mm2 - Fs max + Fsmax Variable ess = - Fs ress = + F Variable the conc es not exc hult (*) al	tions m ² at) at X = s max -smax -17.00 -17.00 -17.00 stress ceed F	0 N / mm N / mm N / mm
Check X at bar Enter values int Variable Constants	locations i.e. D2 to equations belo BC L1 or L3 L2 DC1 DC3 DC2 HY oment about Ce As1 * (- (+ As3 * (- (ly for the case where X is > H an $(- \varphi/2 \text{ to } D2 + \varphi/2, D1 - \varphi/2 \text{ to } I)$ by to find N & M and N / M at ear IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X = Displaced concrete stress x Displaced concrete stress Displaced co	nd > CeD to see if reinf is variable D1 + $\varphi/2$, D3 - $\varphi/2$ to D3 + $\varphi/2$ to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2 prop of bar in stress block prop of bar in stress block bar and a divide / zero use ck is within section s always known Excel n * (d1 - X) / (X - (0.5H*(1-BC))	again for calculate colar Angle = = = = = = = = = = = = = = = = = = =	L2 and displaces for al 0 1 -1 1 0 -1 1 0 0 0 0 0 1E-07 1 s been 1 * Fsm 3 * Fsm	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress is Tens Str Comp St Stress is to to to Ensures block do used for n ax + DC	ete deduct ts cuEs N/mm2 - Fs max + Fsmax Variable ess = - Fs variable the conc es not exc hult (*) at (*) at	tions m ² at) at X = s max -smax -17.00 -17.00 -17.00 stress ceed F	0 N / mm N / mm N / mm
Check X at bar Enter values int Variable Constants N = (N / M) * Ma	locations i.e. D2 to equations belo BC L1 or L3 L2 DC1 DC3 DC2 HY oment about Ce As1 * (- (+ As3 * (- (+ As2 * (- (ly for the case where X is > H an $(- \varphi/2 \text{ to } D2 + \varphi/2, D1 - \varphi/2 \text{ to } I)$ by to find N & M and N / M at ear IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X = Displaced concrete stress x Displaced concrete stress Displaced co	nd > CeD to see if reinf is variable D1 + φ /2, D3 - φ /2 to D3 + φ /2 to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2 prop of bar in stress block prop of bar in stress block (1 - X) / (X - (0.5H*(1-BC))) * (d2 - X) / (X - (0.5H*(1-BC)))	again for calculate colar Angle = = = = = = = = = = = = = = = = = = =	L2 and displaces for all 0 1 -1 1 0 -1 1 0 0 0 0 0 1E-07 1 s been 1 * Fsm 3 * Fsm	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress is Tens Str Comp St Stress is to to to Ensures block do used for n ax + DC	ete deduct ts cuEs N/mm2 - Fs max + Fsmax Variable ess = - Fs variable the conc es not exc hult (*) at (*) at	tions m ² at) at X = s max -smax -17.00 -17.00 -17.00 stress ceed F	0 N / mm N / mm N / mm
Check X at bar Enter values int Variable Constants N = (N / M) * Ma N = (N / M)	locations i.e. D2 to equations belo BC L1 or L3 L2 DC1 DC3 DC2 HY oment about Ce As1 * (- (+ As3 * (- (+ As2 * (- (+ HY * (B *) * (- As1 * (ly for the case where X is > H an $P_{-} \varphi/2$ to D2 + $\varphi/2$, D1 - $\varphi/2$ to I by to find N & M and N / M at ear IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X = Displaced concrete stress x p Displaced concrete stress x p Displaced concrete stress x p If X / λ > = H HY = 0 but to Otherwise, where stress bloc entre N / M values is 1 - L1^2) * 0.5ɛcuEs * (BC+1) 1 - L2^2) * 0.5ɛcuEs * (BC+1) λ * Conc * X) + (B * λ * Con $P_{-}(1 - L1^2)$ * 0.5ɛcuEs * (BC+1)	nd > CeD to see if reinf is variable D1 + φ /2, D3 - φ /2 to D3 + φ /2 to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2 prop of bar in stress block prop of bar in stress block (1 - X) / (X - (0.5H*(1-BC))) * (d1 - X) / (X - (0.5H*(1-BC))) = (1 - HY) = (1 - X) / (X - (0.5H*(1-BC)))	again for calculate colar Angle = = = = = = = = = = = = = = = = = = =	L2 and displaces for al 0 1 -1 1 0 -1 1 0 0 0 0 1E-07 1 s been 1 1 * Fsm 3 * Fsm	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress = Stress is Tens Str Comp St Stress is to to to Ensures block do used for n ax + DC ax + DC	ete deduct ts cuEs N/mm2 - Fs max + Fsmax Variable ess = - Fs ress = + F Variable the conc es not exc hult (*) an C1) 3) 2)	tions m ² at) at X = s max -17.00 -17.00 -17.00 stress sceed H nd pov	0 N / mm N / mm N / mm
Check X at bar Enter values int Variable Constants N = (N / M) * Ma N = (N / M) + (N / M)	locations i.e. D2 to equations belo BC L1 or L3 L2 DC1 DC3 DC2 HY oment about Ce As1 * (- (+ As3 * (- (+ As2 * (- (+ HY * (B *) * (- As1 * () * (- As3 * (ly for the case where X is > H an $P_{-} \varphi/2$ to D2 + $\varphi/2$, D1 - $\varphi/2$ to I by to find N & M and N / M at ear IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X = Displaced concrete stress x p Displaced concrete stress x p Displaced concrete stress x p Displaced concrete stress x p If X / λ > = H HY = 0 but to Otherwise, where stress bloc entre N / M values is 1 - L1^2) * 0.5ɛcuEs * (BC+1) 1 - L2^2) * 0.5ɛcuEs * (BC+1) λ * Conc * X) + (B * λ * Con (I - L1^2) * 0.5ɛcuEs * (BC+1) (I - L3^2) * 0.5ɛcuEs * (BC+1)	nd > CeD to see if reinf is variable D1 + $\varphi/2$, D3 - $\varphi/2$ to D3 + $\varphi/2$ to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2 prop of bar in stress block prop of bar in stress block (1 - X) / (X - (0.5H*(1-BC))) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC)))	again for calculate colar Angle = = = = = = = = = = = = = = = = = = =	L2 and displaces for al 0 1 -1 1 0 -1 1 0 0 0 0 1E-07 1 s been 1 1 * Fsm 3 * Fsm 1 * Fsm	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress = Stress is Tens Str Comp St Stress is to to to Ensures block do used for n ax + DC ax + DC2 ax + DC2	ete deduct ts cuEs N/mm2 - Fs max + Fsmax Variable ess = - Fs ress = + F Variable the conc es not exc hult (*) a c1) 3) 2) 1) * (d1 - * (d3 - H)	tions m ² at) at X = s max -17.00 -17.00 -17.00 stress sceed H nd pov + H / 2) (2))	0 N / mm N / mm N / mm ver (^))
Check X at bar Enter values int Variable Constants N = (N / M) * Mo N = (N / M) + (N / M) + (N / M)	locations i.e. D2 to equations belo BC L1 or L3 L2 DC1 DC3 DC2 HY oment about Ce As1 * (-(+ As3 * (-(+ As3 * (-(+ As2 * (-(+ HY * (B *) * (-As1 * () * (-As2 * (ly for the case where X is > H an $(-\varphi/2 \text{ to } D2 + \varphi/2, D1 - \varphi/2 \text{ to } D)$ by to find N & M and N / M at ear IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X = Displaced concrete stress x f Displaced concrete stress to concrete stress to concrete stress x f Displaced concrete stress to concrete stress x f Displaced concrete stress x f Displaced concrete stress to concrete stress x f Displaced concrete stress to concrete stress to concrete stress x f Displaced concrete stress to concrete stress x f Displaced concrete stress to concrete stress	nd > CeD to see if reinf is variable D1 + $\varphi/2$, D3 - $\varphi/2$ to D3 + $\varphi/2$ to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2 prop of bar in stress block prop of bar in stress block (d1 - X) / (X - (0.5H*(1-BC))) * (d2 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d2 - X) / (X - (0.5H*(1-BC))) * (d2 - X) / (X - (0.5H*(1-BC)))	again for calculate colar Angle = = = = = = = = = = = = = = = = = = =	L2 and displaces for al 0 1 -1 1 0 -1 1 0 0 0 0 1E-07 1 s been 1 1 * Fsm 3 * Fsm 1 * Fsm	note L2e eed concre I key poin Fs = 0.5ε Fs = εcul Stress = Stress = Stress is Tens Str Comp St Stress is to to to Ensures block do used for n ax + DC ax + DC2 ax + DC2	ete deduct ts cuEs N/mm2 - Fs max + Fsmax Variable ess = - Fs ress = + F Variable the conc es not exc hult (*) a c1) 3) 2) 1) * (d1 - * (d3 - H)	tions m ² at) at X = s max -17.00 -17.00 -17.00 stress sceed H nd pov + H / 2) (2))	0 N / mm N / mm N / mm ver (^))
Check X at bar Enter values int Variable Constants N = (N / M) * Mo N = (N / M) + (N / M) + (N / M) + (N / M)	locations i.e. D2 to equations belo BC L1 or L3 L2 DC1 DC3 DC2 HY oment about Ce As1 * (-(+ As3 * (-(+ As2 * (-(+ HY * (B *) * (-As1 * () * (-As2 * () * (-HY * (B *	y for the case where X is > H an - $\varphi/2$ to D2 + $\varphi/2$, D1 - $\varphi/2$ to I bw to find N & M and N / M at eas IF code is EC2 and X > H Otherwise IF X < 0.616 D1 or D3 IF X > 2.639 D1 or D3 Otherwise and including if EC IF X < 0.616 D2 (CeD2 va IF X > 2.639 D2 and if EC2 & Otherwise, incl if = EC2 & X : Displaced concrete stress x p Displaced concrete stress x p Displaced concrete stress x p If X / λ > = H HY = 0 but to Otherwise, where stress bloce entre N / M values is (1 - L1^2) * 0.5ɛcuEs * (BC+1) 1 - L2^2) * 0.5ɛcuEs * (BC+1) X * Conc * X) + (B * λ * Coc (1 - L1^2) * 0.5ɛcuEs * (BC+1) - (1 - L2^2) * 0.5ɛcuEs * (BC+1) * λ * Conc * X) * ((0.5 * H) - (nd > CeD to see if reinf is variable D1 + $\varphi/2$, D3 - $\varphi/2$ to D3 + $\varphi/2$ to ach point. Then calculate the F virtual hinge at X = 0.5 H virtual hinge at X = 0 except if EC2 & X > H C2 & X > H alue relates to H and D2) & X > H & X < CeD2 > H & X > CeD2 prop of bar in stress block prop of bar in stress block (d1 - X) / (X - (0.5H*(1-BC))) * (d2 - X) / (X - (0.5H*(1-BC))) = 1) * (d1 - X) / (X - (0.5H*(1-BC))) = 1) * (d2 - X) / (X - (0.5H*(1-BC))) * (d2 - X) / (X - (0.5H*(1-BC)))	<pre>a again for b calculate Polar Angle = = = = = = = = = = = = = = = = = = =</pre>	L2 and displaces for al 0 1 -1 1 0 -1 1 0 0 0 0 1E-07 1 s been 1 * Fsm 3 * Fsm	note L2e eed concre I key poin Fs = 0.5£ Fs = ɛcul Stress = Stress = Stress is Tens Str Comp St Stress is to to Ensures block do used for n ax + DC ax + DC2 ax + DC2	ete deduct ts cuEs N/mm2 - Fs max + Fsmax Variable ess = - Fs ress = + F Variable the conc es not exc hult (*) al C1) 3) 2) 1) * (d1 - * (d3 - H / 2) * (H / 2)	tions m ² at) at X = s max -17.00 -17.00 -17.00 stress ceed H nd pov H / 2) (2)) - d2)	0 N / mm N / mm N / mm ver (^))

					MOMEN	NT AND	DESIGN SHEAR	COEFFI	CIENTS	OEFF 1	Ηον	wes Atkin Copyrigh	A Conson Crow	
Ext	ract Fro	om Moo	dy Char	ts For a	Wall Pa	anel					-			
Valı	ues are	for Hydr	ostatic, F	Full to Bi	rim, Fixe	ed at Bas	se and Si	ides and	Free at	Top for a	a/b = 3/4	& a/b =	1	
NO [.]	TES	a	a = Leng	th / 2	b = He	eiaht	x =	hor dista	ance	v =	vert dist	ance		
-	-		fa/b=			_		, L / H =		1				
)	(/a=1	is at Mid	Length	У	/ b = 1 is	s at Top	of Wall					
			Mx = Hoi Rx = Hor						Vertical I Vertical F					
							Drim Ei	-	ase and			at Tan		
		L												
		Г	Highlight	ed Zone	s indica	te key M	IX & RX (I	nor) & i	My & Ry	(vert) Co	Defficient	ts		
						-								
	F				D REA						R PLA	ATES		
	¥/b	MON			D REA		NS FC	DR REC		GULA	R PLA	ATES		
		MON		0.2	D REA N		NS FC	DR REC		GULA	R PLA M	TES	0.8	
4	У/b 1.0 0.8	MON Rx ×/0 +.1061	0 0	0.2	D REA 0.4 +.0013	CTION 4 x 0.6 0115	NS FC	DR REC	0 0	GULA	R PLA M 0.4	ATES 9 0.6 0	0	0
3/4	1.0	MON Rx X/0 +.1061 +.2077		0.2 +.0196 +.0177	D REA N	CTION A _x 0.6 0115 0119	0.8 0190 0184	DR REC	0 0 +.0087	O.2	R PLA M 0.4 0012	TES 9 0.6 0042	0 0061	0 006
= 3/4	1.0 0.8	MON Rx X/0 +.1061 +.2077	0 + .0406 + .0433 + .0426	0.2 +.0196 +.0177	0.4 +.0013 0003	CTION 4x 0.6 0115 0119 0124	NS FC 0.8 0190 0184 0174	DR REC	0 0	0.2 0 +.0031 +.0010	R PLA M 0.4	TES 9 0.6 0 0042 0102	0	0 006 013
- q	1.0 0.8 0.6	MON Rx x/0 +.1061 +.2077 +.2408 +.2542	0 + .0406 + .0433 + .0426	0.2 +.0196 +.0177 +.0145 +.0091	0.4 +.0013 0003 0026 0039	CTION A _x 0.6 0115 0119 0124 0102	O.8 0190 0184 0174 0130	DR REC	0 0 +.0087 +.0085 +.0070	0.2 0 +.0031 +.0010 0011	R PLA M 0.4 0 0012 0055 0075	TES 9 0.6 0 0042 0102	0 0061 0130 0137	0 006 013 014
н	1.0 0.8 0.6 0.4	MON Rx X/0 +.1061 +.2077 +.2408 +.2542 +.1337 0196	0 +.0406 +.0433 +.0426 1.0349 +.0163 0	0.2 +.0196 +.0177 +.0145 +.0091 +.0031 +.0028	D REA 0.4 +.0013 0026 0039 0017 +.0064	CTION A _x 0.6 0115 0124 0124 0102 0031 +.0093	NS FC 0.8 0190 0184 0174 0130 0033 +.0111	DR REC 0214 0205 0189 0138 0033 +.0117	0 0 +.0087 +.0085 +.0070 +.0033 0	0.2 0 +.0031 +.0010 0011	R PLA 0.4 0 0012 0055 0075 0000	TES 0.6 0 0042 0102 0115 +.0014	0 0061 0130 0137 + .0029	0 006 013 014 +.003
- q	1.0 0.8 0.6 0.4 0.2	MON Rx X/0 +.1061 +.2077 +.2408 +.2542 +.1337 0196	0 +.0406 +.0433 +.0426 1.0349 +.0163 0	0.2 +.0196 +.0177 +.0145 +.0091 +.0031 +.0028	D REA 0.4 +.0013 0026 0039 0017 +.0064	CTION A _x 0.6 0115 0124 0124 0102 0031 +.0093	NS FC 0.8 0190 0184 0174 0130 0033 +.0111	DR REC 0214 0205 0189 0138 0033	0 0 +.0087 +.0085 +.0070 +.0033 0	0.2 0 +.0031 +.0010 0011 +.0001	R PLA 0.4 0 0012 0055 0075 0000	TES 0.6 0 0042 0102 0115 +.0014	0 0061 0130 0137 + .0029	0 006 013 014 +.003
- q	1.0 0.8 0.6 0.4 0.2	MON Rx X/0 +.1061 +.2077 +.2408 +.2542 +.1337 0196 Rx Ry	0 +.0406 +.0433 +.0426 0163 0 0196	0.2 +.0196 +.0177 +.0145 +.0091 +.0026 +.1256	 REA 0.4 +.0013 0026 0039 0017 +.0064 +.2666 	CTION A _x 0.6 0115 0119 0124 0102 0031 +.0093 +.3496	NS FC 0.8 0190 0184 0174 0130 0033 +.0111 +.3923	DR REC 0214 0205 0189 0138 0033 +.0117	0 0 +.0087 +.0085 +.0070 +.0033 0	0.2 0 +.0031 +.0010 0011 +.0001	R PLA 0.4 0 0012 0055 0075 0000	TES 0.6 0 0042 0102 0115 +.0014	0 0061 0130 0137 + .0029	0 006 013 014 +.003
- q	1.0 0.8 0.6 0.4 0.2 0	MON Rx X/0 +.1061 +.2077 +.2408 +.2542 +.1337 0196 Rx Ry +.1985 +.2564	0 +.0406 +.0433 +.0426 0163 0 0196 +.0644 F.0601	0.2 +.0196 +.0177 +.0145 +.0091 +.0026 +.1256 +.0253 +.0210	 REA 0.4 +.0013 0026 0039 0017 +.0064 +.2666 0013 0028 	CTION A _x 0.6 0115 0119 0124 0102 0031 +.0093 +.3496 0172 0161	NS FC 0.8 0190 0184 0174 0130 0033 +.0111 +.3923 0252 0226	DR REC 0214 0205 0189 0138 0033 +.0117 +.4055 0276	0 0 +.0087 +.0085 +.0070 +.0033 0	0.2 0 +.0031 +.0010 0011 +.0139 0	R PLA 0.4 0 0012 0055 0075 0000 +.0320	TES 0.6 0 0042 0102 0115 +.0014 +.0465	0 0061 0130 0137 +.0029 +.0554	0 006 013 014 +.003 +.058
= q/o	1.0 0.8 0.6 0.4 0.2 0	MON Rx X/0 +.1061 +.2077 +.2408 +.2542 +.1337 0196 Rx Ry +.1985 +.2564	0 +.0406 +.0433 +.0426 0163 0 0196 +.0644 F.0601	0.2 +.0196 +.0177 +.0145 +.0091 +.0026 +.1256 +.0253 +.0210	 REA 0.4 +.0013 0026 0039 0017 +.0064 +.2666 0013 0028 	CTION A _x 0.6 0115 0124 0124 0031 +.0093 +.3496 0172	NS FC 0.8 0190 0184 0174 0130 0033 +.0111 +.3923 0252 0226	DR REC 0214 0205 0189 0138 0033 +.0117 +.4055 0276	0 0 +.0087 +.0085 +.0070 +.0033 0	O.2 0 +.0031 +.0010 0011 +.0139 0 +.0034	R PLA 0.4 0 0012 0075 0075 0000 +.0320 0 0026	TES 0.6 0 0042 0102 0115 +.0014 +.0465	0 0061 0130 +.0029 +.0554	0 006 013 014 +.003 +.058 0 0099
= 1 a/b =	1.0 0.8 0.6 0.4 0.2 0 1.0 0.8 0.6 0.4	MON Rx X/0 +.1061 +.2077 +.2408 +.2542 +.1337 0196 Rx Ry +.1985 +.2564 +.2564 +.2485 +.2485 +.2411	0 +.0406 +.0433 +.0426 0149 +.0163 0 0196 +.0644 F.0601 +.0515 +.0372	0.2 +.0196 +.0177 +.0145 +.0091 +.0028 +.1256 +.0253 +.0210 +.0149 +.0149	 REA 0.4 +.0013 0026 0039 0017 +.0064 +.2666 0013 0028 0047 0049 	CTION A _x 0.6 0115 0119 0124 0102 0031 +.0093 +.3496 0172 0161 0145 0100	NS FC 0.8 0190 0184 0174 0130 0033 +.0111 +.3923 0252 0252 0252 0189 0118	DR REC 0214 0205 0189 0138 0033 +.0117 +.4055 0276 0245	0 0 +.0087 +.0085 +.0070 +.0033 0 	O.2 0 +.0031 +.0010 0011 +.0139 0 +.0034	R PLA 0.4 0 0012 0055 0075 0000 +.0320 0 0026 0075	TES 9 0.6 0 0042 0102 0115 +.0014 +.0465 0 0065	0 0061 0130 0137 +.0029 +.0554 0 0088	0 006 013 014 +.003 +.058 0 0099
= 1 a/b =	1.0 0.8 0.6 0.4 0.2 0 1.0 0.8 0.6 0.4 0.2	MON Rx X/0 +.1061 +.2077 +.2408 +.2542 +.1337 0196 Rx Ry +.2564 +.2564 +.2485 +.2485 +.2485 +.2411 +.108	0 +.0406 +.0426 0196 +.0163 0 0196 +.0644 F.0601 +.0515 +.0154	0.2 +.0196 +.0177 +.0145 +.0031 +.0028 +.1256 +.0253 +.0210 +.0149 +.0078 +.0025	 REA 0.4 +.0013 0026 0039 0017 +.0064 +.26666 0013 0028 0047 0049 0006 	CTION A _x 0.6 0115 0124 0124 0102 0031 +.3496 0172 0161 0145 0100 0006	NS FC 0.8 0190 0184 0174 0130 0033 +.0111 +.3923 0252 0226 0189 0118 0000	DR REC 1.0 0214 0205 0189 0138 0033 +.0117 +.4055 0245 0245 0201 0122 +.0003	0 0 +.0087 +.0085 +.0070 +.0033 0 0 +.0120 +.0103	O.2 0 +.0031 +.0010 0011 +.0139 0 +.0034 +.0003	R PLA 0 0012 0075 0075 0000 +.0320 0 0026 0075 0076	TES y 0.6 0 0042 0102 0115 +.0014 +.0465 0 0065 0125 0099	0 0130 0137 +.0029 +.0554 0 0088 0151 0106	0 006 013 014 +.003 +.058 0 009 015 010
= q/o	1.0 0.8 0.6 0.4 0.2 0 1.0 0.8 0.6 0.4 0.2 0	MON Rx X/0 +.1061 +.2077 +.2408 +.2542 +.1337 0196 Rx Ry +.1985 +.2564 +.2564 +.2485 +.2485 +.2411	0 +.0406 +.0433 +.0426 0196 +.0163 0 0196 +.0644 F.0601 +.0515 +.0372 +.0154 0	0.2 +.0196 +.0177 +.0145 +.0031 +.0028 +.1256 +.0253 +.0210 +.0149 +.0078 +.0025	 REA 0.4 +.0013 0026 0039 0017 +.0064 +.26666 0013 0028 0047 0049 0006 	CTION A _x 0.6 0115 0124 0124 0102 0031 +.3496 0172 0161 0145 0100 0006	NS FC 0.8 0190 0184 0174 0130 0033 +.0111 +.3923 0252 0226 0189 0118	DR REC 1.0 0214 0205 0189 0138 0033 +.0117 +.4055 0245 0245 0201 0122 +.0003	0 0 +.0087 +.0085 +.0070 +.0033 0 +.0120 +.0103 +.0074	O.2 0 +.0031 +.0010 0011 +.0139 0 +.0034 +.0003 0021	R PLA 0.4 0 0012 0055 0075 0000 +.0320 0 0026 0075 0076 +.0060	TES 9 0.6 0 0042 0102 0115 +.0014 +.0465 0 0065 0125 0199 +.0116	0 0130 0137 +.0029 +.0554 0 0088 0151 0106 +.0160	0 013 014 +.003 +.058 0 009 015 010 +.017



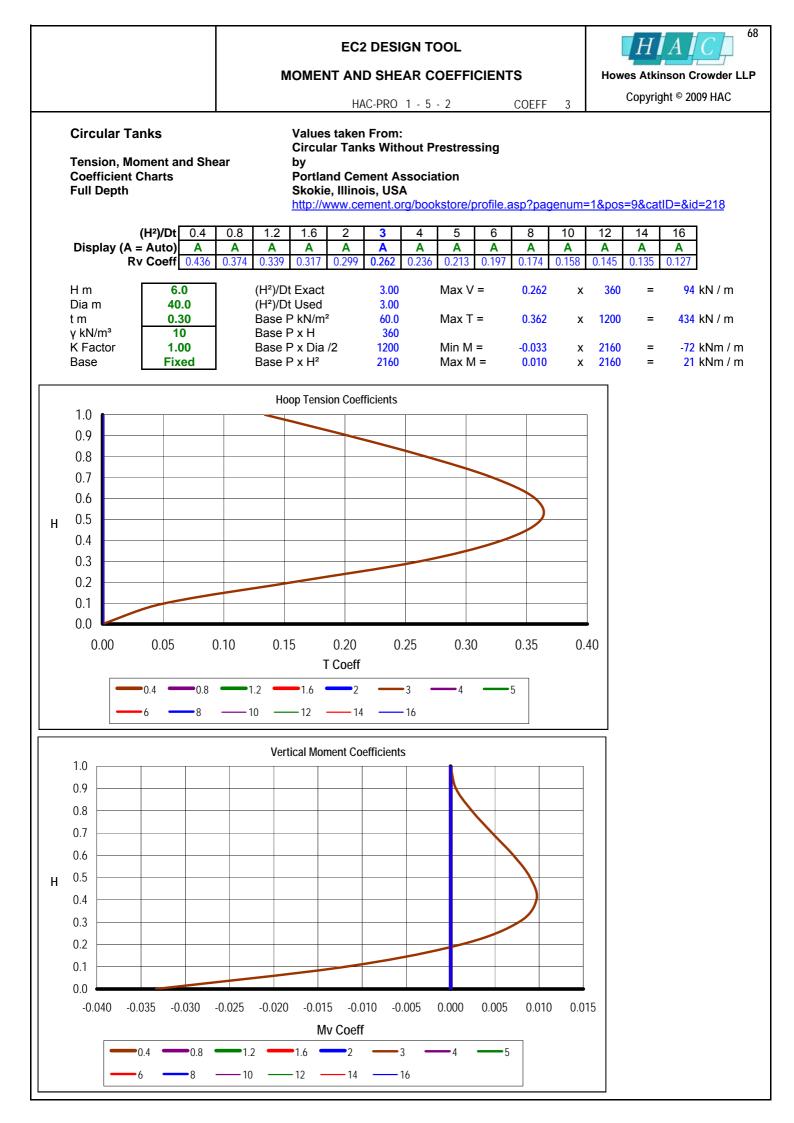

POSITIVE SIGN CONVENTION

FIGURE 4.—Plate fixed along three edges, moment and reaction coefficients, Load IV, uniformly varying load.

These tables can be difficult to use and normally the highlighted values are all that are needed or used.

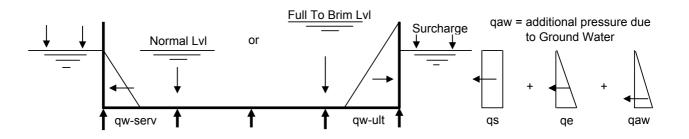
The following sheet displays the key values graphically for various Loadings, Depths and Top Fixity. Common a / b or Length / Height ratios are available together with 2 additional values for Mvert.

WORKED EXAMPLES

HAC-PRO 1 - 5 - 2

EXAM 1/13

Worked Examples


1 Rectangular Tank

Design a concrete tank 16m x 12m x 8m high on piles at 4m ctrs with a settlement of 300kN / mm The normal water level is at 7m. Interpolate chart values between 0.667 H and 1.0 H It is possible that the tank can be full to the brim in occasional but short duration cases. Design as Free at top and then consider possibilities of connecting the tops of the long sides Backfill is granular and ground level is at 2 / 3 of tank ht for charts analysis and at 5m for computer analysis. Ground Water is taken to be at ground level Surcharge is a Variable Action of 10 kN / m² Design for Tightness Class 1 under Normal Conditions For Full To Brim Conditions - Assess acceptable crack widths. (Class 0 or 1) Aggregate is Default. Relative Humidity on non water retaining faces is 85% Drying will be from 1 Face Concrete grade is C 30 / 37, Class N with 340 kg / m3 O/A cement with 50% GGBS Construction will be in Summer. Seasonal Temp drop is 20 Deg for Walls and 15 Deg for Slabs Exposure class is XC2. Design life to a major maintenance / repair = 60 yrs. Permitted Cover Dev = 10mm Walls are designed as Edge Restrained. Base is End Restrained to some degree by piles.

Assess what Restraint Factors should be used

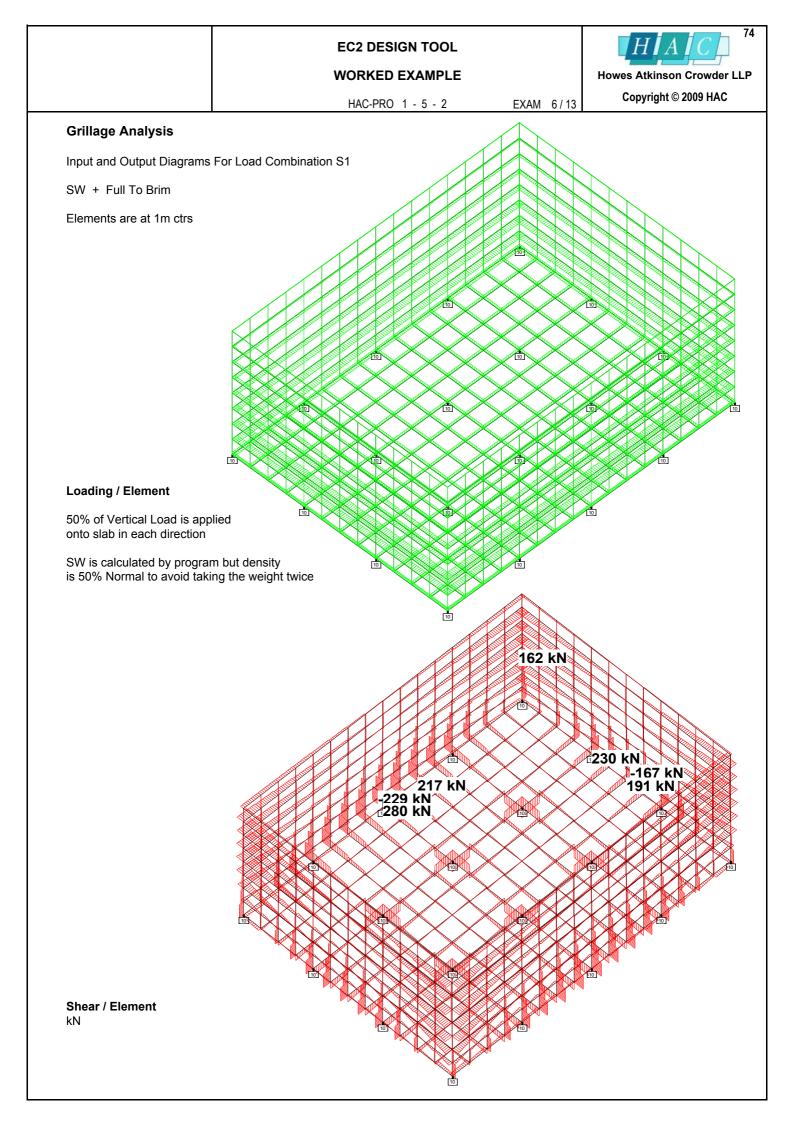
Consider the restraint provided by piles

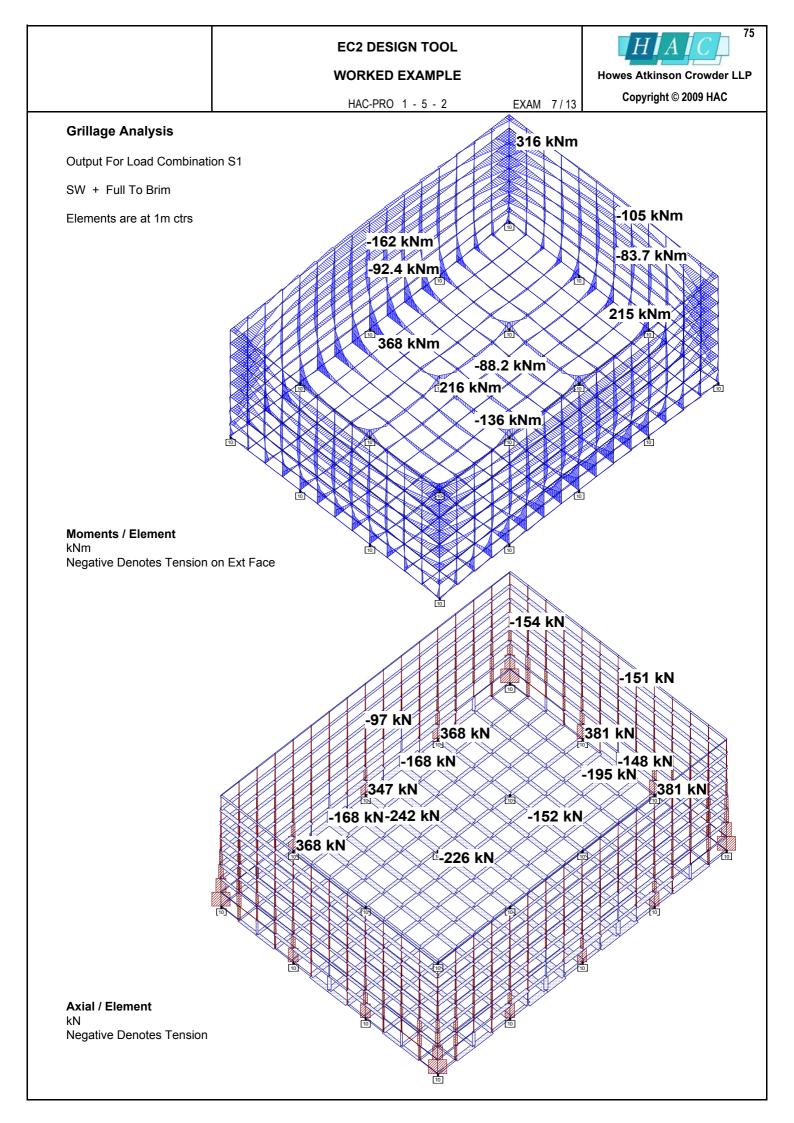
a 350 x 350 Driven Piles b 700 Dia CFA Piles

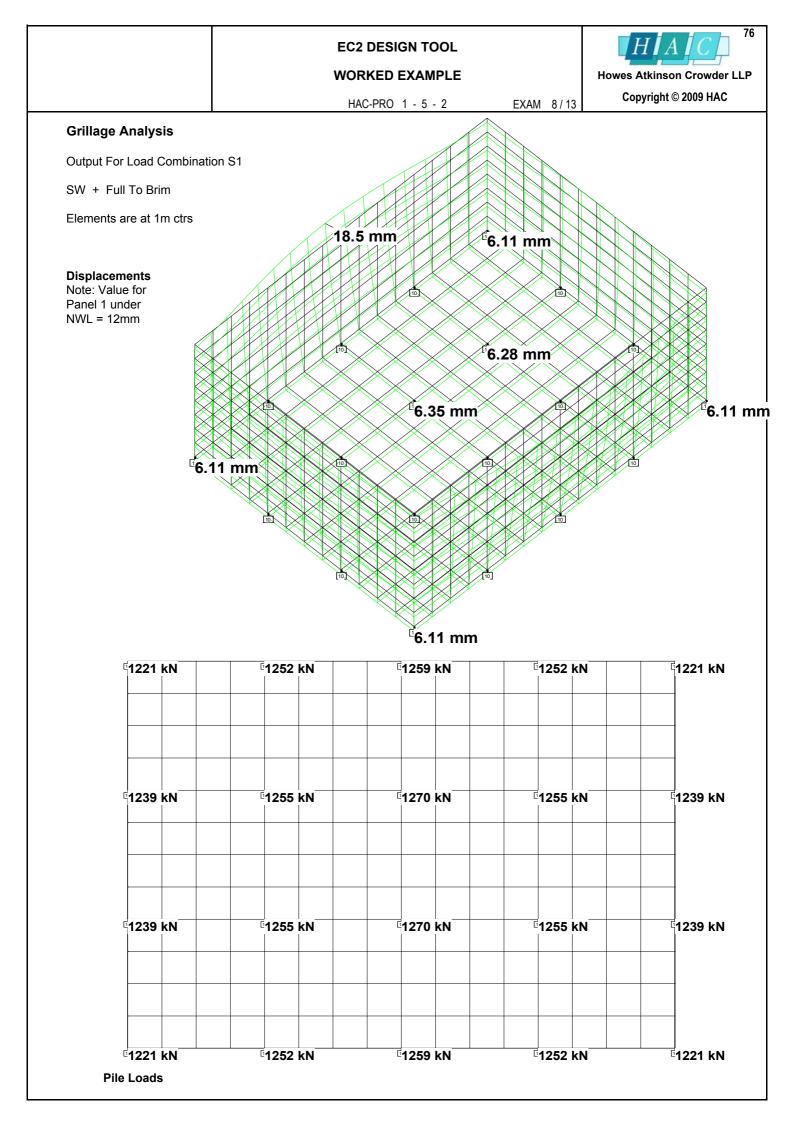
Use Coefficient Charts and Moody Tables to calculate the maximum horizontal & vertical forces Calculate the base slab flat slab moments by hand and distribute into column and middle strips Calculate the ultimate pile loads, multiply by appropriate β factors and consider punching shear Assess Uplift on Piles for case where tank is empty

Compare results for Full to Brim from those generated from a computer model.

Assess Reinforcement for Shrinkage and Applied Loads based on results from computer model.

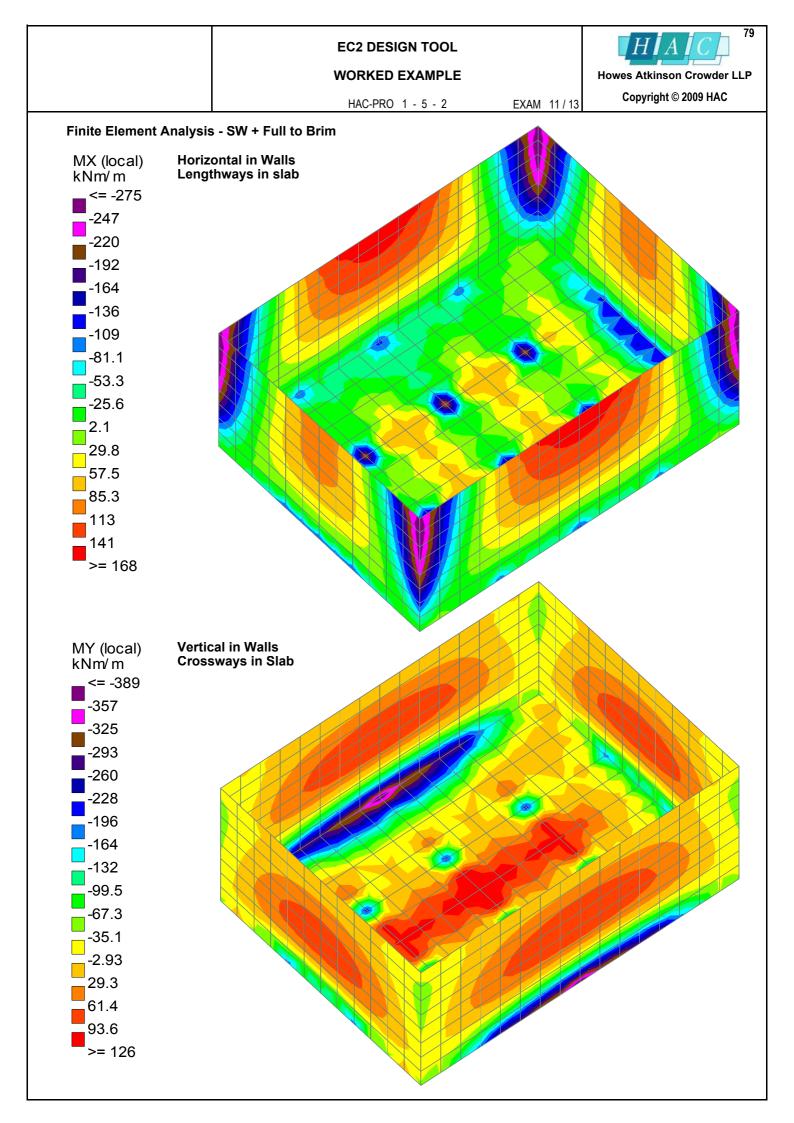

		EC2 DESIGN TOOL		H A C
		WORKED EXAMPLE		Howes Atkinson Crowde
		HAC-PRO 1 - 5 - 2	EXAM 2/13	Copyright © 2009 HA(
Questio	ns			
Geotech	nnical and Exter	nal Effects		
1	What is a rea	asonable K factor (Ke) to apply to the exterr	nal earth to give hori	zontal forces
	For a granul	ar soil, Ke is usually taken as 0.5		
2	How does gr	ound water affect and combine with the soi	l forces	
	Add water as	s a separate load and give it a density of 10	x (1 - Ke) and a K v	alue of 1.0.
3	What factors	need to be considered when assessing sur	rcharge value	
	Compaction	forces, vehicle loads, plant slabs, raft loads		
4	What Pile se	ttlement values should be chosen in relation	n to the SWL in clay	and in granular ground
	A settlement	of 3 to 4mm per Safe Working Load is norr	nally proved in pile t	ests.
5	How much re	elief can the external earth and water loads	give to the design o	f a full tank
	None			
6	What FOS s	hould be applied to uplift when resting on th	e ground	
	It should nov	v be based on 1.1 x Uplift Forces - 0.9 x Do	wn Forces.	
7	What can be	a problem with achieving a tension resistant	nce from piles	
	It may be dif	ficult to mobilise enough friction before the p	bile reaches a refuse	al in dense gravels.
8	What are the	implications of aggressive chemicals on th	e concrete	
	Increased co	over and cement content, combination mixes	s and lower water ce	ement ratio
9	What publica	ations are used if the soil is classified as AC		
	BS EN 206 -	1, BS8500 and BRE Special Digest 1 : 200	5 Concrete in aggr	essive ground
10	What cover i	s required if the soil is classified as AC		
	50mm if cas	against formwork and 75mm if cast agains	t the ground	
11	What other p	protection is often required for high AC value	es	
	Low permea	bility formwork may be required for AC-4 an	d AC-5 categories	

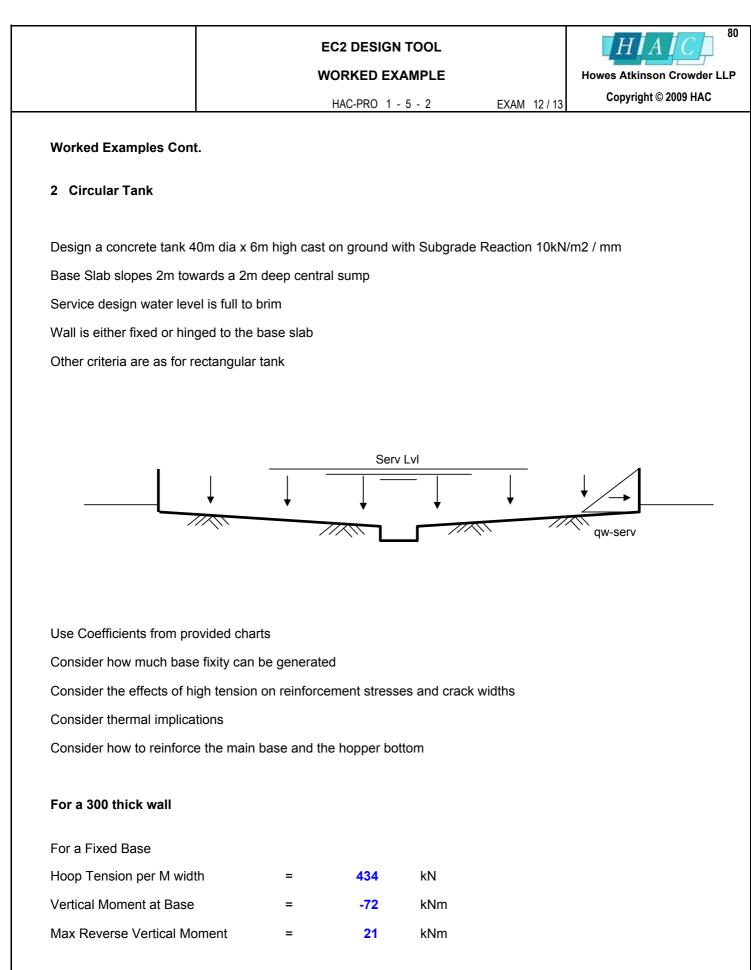

						EC	2 DESI	GN 1	FOOL				H	
						wo	RKED I	EXA	MPLE			How	ves Atki	nson Crowder L
						Н	IAC-PRO	1 - 5	5 - 2		EXAM 3/13		Copyrig	pht © 2009 HAC
Recta	ngular Tan	k												
Analys	sis			Using	"Mome	ents a	and Read	tion	s For Rec	tangı	ular Plates"	by W. T	. Mood	у
For Aı	utomatic Des	sign:-	L/H	or W / H	must b	e :-	0.5	or	1	or	1.5 or	2	or	3
	Lengt	h =	16	m	Width	=	12	m	Height	=	<mark>8</mark> m	=		
Panel Panel		L L	 	H H		= =	16 12	 	8 8	= =	2.00 1.50		ор ор	Free Free
All Act The de Full To Perma	tions are co tions are co esign must e o Brim case nent Loads cteristic Loa	nsider ensure applie are ac	ed Fixe that th s a red curatel	d and E e full to uced Pa y defina)irect. brim c artial Sa able so	All lo ase i afety Gksu	ads are s a revei Factor γ up = Gkii	the f rsible and	ull charac e service	terist limit s	ic values. state	lass	Service	e Wmm
Action	is - Fixed an	d Dire	ct			Ult y	,		Hyd	Irosta	tic	Max	Cla	
0	o 16110				U1	U2	U3		R	latios		1a	1b	1c
	Self Weight Internal Wat		ormalia	امر	1.35	1.3			ho 7000	H 600	ho/H 11.7	Acc	Gen <mark>0.2</mark>	Full Depth
	Internal Wat				1.20	1.5			8000	600	13.3	0.3	0.2	0.158
	External Ear	th & W	ater				1.35		5333	600	8.9	510	0.2	
Qk	External Sur	charge	•				1.50		5333	600	8.9		0.2	
Interna	al Actions			Coeffic	cients a	re inte	erpolated	betv	veen 0.667	7 H va	lues and 1.0	H value	es	
Desigr	n Level Gk			Depth	= [0.875	Н		Loading		Hydro			
Pressu	ure at base	=	10	x	1.00	х	0.875	х	8	=	70.0 kN/m ² Factor	S 1.0	U 1.35	
Panel	1 Mv at	Base		=	0.0701	х	70.0	х	8	х	8 =		423.88	kNm / m
		mid ht		=	-0.0138	Х	70.0	х	8	х	8 =		-83.68	kNm / m
		ax at T		=	0.0000	Х	70.0	Х	8		=	0	0	kN / m
		ax at B Sides		=	0.4053 0.0480	X	70.0 70.0	X	8 8	v	= 8 =		306.39 290.51	kN / m kNm / m
		Mid -		=	0.0480	X X	70.0	X X	8	X X	8 = 8 =		-125.4	kNm / m kNm / m
		ax at S		=	0.2191	x	70.0	x	8	^	=		165.63	kN / m
Panel	2 Mv at	Base		=	0.0500	х	70.0	х	8	х	8 =		302.12	kNm / m
		mid ht		=	-0.0130	х	70.0	х	8	х	8 =		-78.77	kNm / m
		ax at T		=	0.0000	Х	70.0	х	8		=	0		kN / m
		ax at B Sides		=	0.3661	X	70.0	X	8	v	= 2 -		276.76	kN/m kNm/m
		Mid -		=	0.0342 -0.0163	X X	70.0 70.0	X X	8 8	X X	8 = 8 =		206.71 -98.55	kNm / m kNm / m
		ax at S		=	0.2199	x x	70.0	X X	o 8	^	o = =		-96.55 166.27	kN/II/III kN/m
	o Brim Load	s Gk		Depth	= [1.000	н		Loading		Hydro			
Full To			10	x	1.00	x	1.000	х	8	=	80.0 kN/m ² Factor	S 1.0	U 1.20	
	ure at base	=					00.0	х	8	Х	8 =		519.17	kNm / m
	1 Mv at	Base		=	0.0845	Х	80.0							kNm / m
Pressi	1 Mv at Mv at	Base mid ht	t	=	-0.0159	Х	80.0	х	8	X	8 =	-81.41		
Pressi	1 Mv at Mv at Rv M	Base mid ht ax at T	бор	=	-0.0159 0.0000	x x	80.0 80.0	х	8 8		8 = =	0	0	kN / m
Pressi	1 Mv at Mv at Rv M Rv M	Base mid ht ax at T ax at B	op ase	= = =	-0.0159 0.0000 0.4564	x x x	80.0 80.0 80.0	x x	8 8 8	х	8 = = =	0 292.1	0 350.52	kN / m kN / m
Pressi	1 Mv at Mv at Rv M Rv M Rv M	Base mid ht ax at T ax at B Sides	op ase	= = =	-0.0159 0.0000 0.4564 0.0644	x x x x	80.0 80.0 80.0 80.0	x x x	8 8 8	x x	8 = = = 8 =	0 292.1 329.73	0 350.52 395.67	kN / m kN / m kNm / m
Pressi	1 Mv at Mv at Rv M Rv M Mh at Mh at	Base mid ht ax at T ax at B	op ase Span	= = =	-0.0159 0.0000 0.4564	x x x	80.0 80.0 80.0	x x	8 8 8	х	8 = = =	0 292.1 329.73 -141.3	0 350.52	kN / m kN / m
Pressi	1 Mv at Mv at Rv M Rv M Mh a Mh a Rh M	Base mid ht ax at T ax at B Sides Mid -	op ase Span	= = = =	-0.0159 0.0000 0.4564 0.0644 -0.0276	X X X X X	80.0 80.0 80.0 80.0 80.0	X X X X	8 8 8 8	x x	8 = = 8 = 8 =	0 292.1 329.73 -141.3 164.1	0 350.52 395.67 -169.6	kN / m kN / m kNm / m kNm / m
Pressı Panel	1 Mv at Mv at Rv M Rv M Mh at Rh M 2 Mv at Mv at	Base mid ht ax at T ax at B Sides Mid - ax at S Base mid ht	op ase Span Sides	= = = = =	-0.0159 0.0000 0.4564 0.0644 -0.0276 0.2564 0.0584 -0.0143	x x x x x x	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	x x x x x	8 8 8 8 8 8 8	x x x	8 = = 8 = 8 = =	0 292.1 329.73 -141.3 164.1 299.01 -73.22	0 350.52 395.67 -169.6 196.92 358.81 -87.86	kN / m kN / m kNm / m kNm / m kN / m kNm / m
Pressı Panel	1 Mv at Mv at Rv M Rv M Mh at Mh at Rh M 2 Mv at Rv M	Base mid ht ax at T ax at B Sides Mid - ax at S ax at S Base mid ht ax at T	i op lase Span lides		-0.0159 0.0000 0.4564 0.0644 -0.0276 0.2564 0.0584 -0.0143 0.0000	x x x x x x x x x	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	X X X X X X X	8 8 8 8 8 8 8 8 8	x x x	8 = = 8 = 8 = 8 = 8 = 8 = 8 = 8 = 8 =	0 292.1 329.73 -141.3 164.1 299.01 -73.22 0	0 350.52 395.67 -169.6 196.92 358.81 -87.86 0	kN / m kN / m kNm / m kNm / m kN / m kNm / m kNm / m
Pressı Panel	1 Mv at Mv at Rv M Rv M Mh at Mh at Rh M 2 Mv at Rv M Rv M Rv M	Base mid ht ax at T ax at B Sides Mid - ax at S Base mid ht ax at T ax at B	iop lase Span bides iop lase	= = = = = = =	-0.0159 0.0000 0.4564 0.0644 -0.0276 0.2564 -0.0143 0.0000 0.4055	x x x x x x x x x x x	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	x x x x x x x x x	8 8 8 8 8 8 8 8 8 8	x x x x x	8 = = 8 = 8 = = 8 = 8 = 8 = = =	0 292.1 329.73 -141.3 164.1 299.01 -73.22 0 259.52	0 350.52 395.67 -169.6 196.92 358.81 -87.86 0 311.42	kN / m kN / m kNm / m kNm / m kN / m kNm / m kN / m kN / m
Pressı Panel	1 Mv at Mv at Rv M Rv M Mh ai Mh ai Rh M 2 Mv at Rv M Rv M Rv M Rv M	Base mid ht ax at T ax at B Sides Mid - ax at S ax at S Base mid ht ax at T	iop iase Span Sides iop iase		-0.0159 0.0000 0.4564 0.0644 -0.0276 0.2564 0.0584 -0.0143 0.0000	x x x x x x x x x	80.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	X X X X X X X	8 8 8 8 8 8 8 8 8	x x x	8 = = 8 = 8 = 8 = 8 = 8 = 8 = 8 = 8 =	0 292.1 329.73 -141.3 164.1 299.01 -73.22 0 259.52 221.7	0 350.52 395.67 -169.6 196.92 358.81 -87.86 0	kN / m kN / m kNm / m kNm / m kN / m kNm / m kNm / m


		EC2 DESIGN TOOL												
		WORKED EXAMPLE									Howes Atkinson Crowder			
				н	IAC-PRO	1 - 5	- 2		EXAM 4/1	3	Copyri	yht © 2	009 HAC	
External A	ctions									•				
Dry Earth Gk		Depth	= [0.667	И Н		Loading	=	Hydro		к	=	0.5	
Pressure at base Hydro		Dry So	L		18	х	0.50	x	0.667 X	8	=	48.0		
i rooodio e		Dry CC			10	Χ	0.00	Χ	Factor	S 1.0	U 1.35	-10.0		
Panel 1	Mv at Base	=	0.0461	х	48.0	х	8	х	8 =		191.28		kNm / m	
	My at mid ht	=	-0.0104	x	48.0	x	8	x	8 =	-31.96			kNm / m	
	Rv Max at Top	=	0.0000	х	48.0	х	8		=	C			kN / m	
	Rv Max at Base	=	0.3202	х	48.0	х	8		=	123.02	166.07		kN / m	
	Mh at Sides	=	0.0208	х	48.0	х	8	Х	8 =	63.93	86.305		kNm / m	
	Mh at Mid - Span	=	-0.0093	Х	48.0	Х	8	Х	8 =		-38.59		kNm / m	
	Rh Max at Sides	=	0.1570	Х	48.0	х	8		=	60.318	81.429		kN / m	
Panel 2	Mv at Base	=	0.0359	х	48.0	х	8	х	8 =		148.96		kNm / m	
	Mv at mid ht	=	-0.0109	Х	48.0	Х	8	Х	8 =	-33.5			kNm / m	
	Rv Max at Top	=	0.0000	X	48.0	X	8		=	(115 / F	-		kN / m	
	Rv Max at Base Mh at Sides	=	0.3005 0.0190	X	48.0 48.0	X	8 8	v	= 8 =		5 155.86 78.836		kN / m kNm / m	
	Mh at Mid - Span	=	0.0190	X X	48.0 48.0	X X	8 8	X X	8 = 8 =		/8.836 -32.36		kNm / m kNm / m	
	Rh Max at Sides	=	0.1629	x	48.0	X	8	^	0 = =	62.585			kN / m	
Extra Due	To Water Gk	Depth	= [0.667	И Н		Loading	=	Hydro		Ke	=	0.5	
Note	Equivalent Density	·	I Itional \					=	10 -	5	=	5	kN/m³	
								-			-			
Pressure a	it base Hydro	Extra [Due to \	Vater	5	х	1.00	х	0.667 ×	8 S 1.0	= U 1.35	26.7	kN/m²	
Panel 1	Mv at Base	=	0.0461	х	26.7	х	8	х	8 =	78.717			kNm / m	
	Mv at mid ht	=	-0.0104	х	26.7	х	8	х	8 =	-17.76	-23.97		kNm / m	
	Rv Max at Top	=	0.0000	х	26.7	х	8		=	C	0 0		kN / m	
	Rv Max at Base	=	0.3202	х	26.7	х	8		=	68.343	92.264		kN / m	
	Mh at Sides	=	0.0208	х	26.7	Х	8	Х	8 =		6 47.947		kNm / m	
	Mh at Mid - Span	=	-0.0093	Х	26.7	Х	8	Х	8 =		-21.44		kNm / m	
	Rh Max at Sides	=	0.1570	Х	26.7	х	8		=	33.51	45.239		kN / m	
Panel 2	Mv at Base	=	0.0359	x	26.7	х	8	х	8 =		82.755		kNm / m	
	Mv at mid ht	=	-0.0109	X	26.7	X	8	Х	8 =	-18.61- (-25.13		kNm/m	
	Rv Max at Top	=	0.0000	X	26.7 26.7	X	8		=	-	0 0 86.587		kN/m kN/m	
	Rv Max at Base Mh at Sides	=	0.3005 0.0190	X	26.7 26.7	X X	8 8	v	= 8 =		43.798		kN / m kNm / m	
	Mh at Mid - Span	=	-0.0078	X X	26.7	X	8	X X	8 =		-17.98		kNm / m	
	Rh Max at Sides	=	0.1629	x	26.7	X	8	~	=		46.939		kN / m	
Surcharge Qk		Depth	=	0.667	н		Loading	=	UDL		Ke	=	0.5	
Pressure a	t base UDL	Surcha	arge		10	х	0.50			-	=	5.0	kN/m²	
									Easter	S 1.0	U 1.50			
Panel 1	Mv at Base	=	0.1184	х	5.0	х	8	х	Factor 8 =		56.832		kNm / m	
	Mv at mid ht	=	-0.0296	x	5.0	x	8	x	8 =		-14.21		kNm / m	
	Rv Max at Top	=	0.0000	x	5.0	x	8	~	=	0.472			kN/m	
	Rv Max at Base	=	0.6149	x	5.0	x	8		=	-	36.894		kN / m	
	Mh at Sides	=	0.0753	x	5.0	x	8	х	8 =		36.144		kNm / m	
	Mh at Mid - Span	=	-0.0271	х	5.0	х	8	х	8 =		-13.01		kNm / m	
	Rh Max at Sides	=	0.4093	х	5.0	Х	8		=	16.372	24.558		kN / m	
Panel 2	Mv at Base	=	0.0835	х	5.0	х	8	x	8 =		40.08		kNm / m	
	Mv at mid ht	=	-0.0255	Х	5.0	Х	8	Х	8 =		-12.24		kNm / m	
	Rv Max at Top	=	0.0000	Х	5.0	х	8		=	04 750	-		kN / m	
	Rv Max at Base	=	0.5438	Х	5.0	х	8		=		32.628		kN / m	
	Mh at Sides	=	0.0617	X	5.0	X	8	X	8 =		29.616		kNm / m	
	was or wild Shop	=	-0.0271	Х	5.0	Х	8	Х	8 =	-8.672	2 -13.01		kNm / m	
	Mh at Mid - Span Rh Max at Sides	=	0.4133	х	5.0	Х	8		=	10 500	24.798		kN / m	

					EC	2 DESI	GN TO	OOL					H		$C \square$
					wo	RKED	EXAM	PLE				Но	wes Atki	inson C	rowder L
					Н	IAC-PRO	1 - 5 -	- 2		EXAM	5/13		Copyri	ght © 20	09 HAC
External Ad	ctions Cont														
Combinatio	on Of All Thre	e Extern	al Ac	tions											
			Ψ	Servic	e 1.0	1.0			v	Ultima 1.35	ate Fu 1.35	ndame 1.50	ental		
			Ψ	Earth	Water				Ŷ	Earth	Water				
Panel 1	Mv at Base		=	141.7	78.7	37.9	=	258.3		191.3	106.3	56.8	=		kNm / m
	Mv at mid h		=	-32.0	-17.8		=	-59.2		-43.2	-24.0	-14.2			kNm / m
	Rv Max at T		=	0.0	0.0	0.0	=	0.0		0.0	0.0	0.0	=	0.0	kN / m
	Rv Max at E Mh at Sides		=	123.0 63.9	68.3 35.5	24.6 24.1	=	216.0 123.5		166.1 86.3	92.3 47.9	36.9 36.1	=		kN / m kNm / m
	Mh at Mid -		=	-28.6	-15.9		=	-53.1		-38.6	47.9 -21.4	-13.0	=		kNm / m
	Rh Max at S		_	-20.0 60.3	33.5	-o.7 16.4	=	110.2		-30.0 81.4	45.2	24.6	=		kN / m
	T T Max at C	51005		00.0	00.0	10.4		110.2		01.4	40.2	24.0		101.2	
Panel 2	Mv at Base		=	110.3	61.3	26.7	=	198.4		149.0	82.8	40.1	=		kNm / m
	Mv at mid h		=	-33.5	-18.6		=	-60.3		-45.2	-25.1	-12.2	=		kNm / m
	Rv Max at T Rv Max at F		=	0.0 115.4	0.0 64.1	0.0 21.8	=	0.0 201.3		0.0 155.9	0.0 86.6	0.0 32.6	=		kN / m kN / m
	Mh at Sides		_	58.4	32.4	21.0 19.7	_	110.6		78.8	43.8	32.0 29.6	=		kNm / m
	Mh at Mid -		=	-24.0	-13.3		=	-46.0		-32.4	-18.0	-13.0	=		kNm / m
	Rh Max at S		=	62.6	34.8	16.5	=	113.9		84.5	46.9	24.8	=		kN / m
Slab Desig	n Gk	Unfact	ored	Values											
-					1					2					
Self Wt NWL Loadir	20	24 10	X X	0.6		=	14.4 70		kN / m kN / m						
FTB Loadin		10	x	8		=	80		kN / m						
Pile Spacing	n	4.00	m								SW		Water		
NWL Loadir		14.4	+	70		=	84.4		kN / m	2 ²	0.171		0.829		
FTB Loadin		14.4	+	80		=	94.4		kN / m		0.153		0.847		
Design Wa	ter Level Ana	lysis													
Load per W Load per Sp	idth of Panel	84.4 337.6	x x	4 4		= =	337.6 1350		kN / m kN	1	Ult =	1823	k N		L / F 1.35
Support Mo		1350	x	4	/	12	=		450.1			Panel		112.5	
							0.7								
	mn Strip lle Strip	450.1 450.1	X (X () Use) Use		=	315 135	kNm kNm					
		-100.1	~ (0.2 l	0.4	, 030	0.0	-	100						
Span Mome	ent	1350	х	4	/	24	=		225		kNm /	Panel			
Colu	mn Strip	225	х (0.6 t	o 0.8) Use	0.55	=	124	kNm					
	le Strip	225	x () Use		=	101	kNm					
Full To Brir	n Analysis														
Load per W	idth of Panel	94.4	х	4		=	377.6		kN / m	ı	kNm /	Panel			L/F
Load per Sp		377.6	x	4		=	1510		kN		Ult =	1847	kN		1.223
Support Mo	ment	1510	х	4	/	12	=		503.5		kNm /	Panel		125.9	/ m
	mn Strip lle Strip	503.5 503.5	x (x ()Use)Use		= =	352 151	kNm kNm	x x	1.35 1.35		476 204	kNm kNm
										KINIII				204	KINITI
Span Mome		1510	х	4	/	24	=		252		κινίη /	Panel			
	mn Strip lle Strip	252 252	x (x ()Use)Use		=	138 113	kNm kNm	x x	1.35 1.35		187 153	kNm kNm
MINU	le ouip	202	~ (0.3 [0 0.0	, 058	0.40	-	113		X	1.50	-	100	NINIII

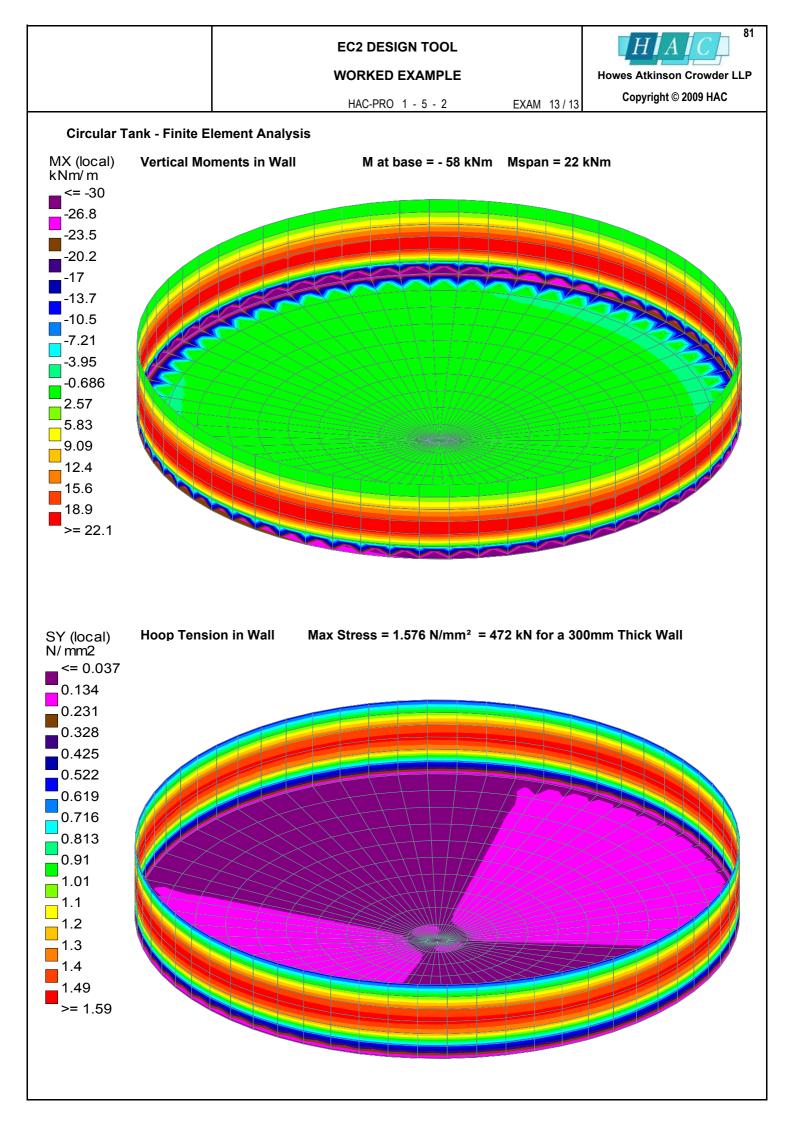
Note that the moments from the independent base slab analysis will rarely match the panel base fixed moments In order to give realistic values, the reinforcement will be calculated from the results of a Grillage / Finite Element Analysis





						EC2	DESI	GN TC	DOL					H	A	C
						WOF	RKED I	EXAM	PLE				Но	wes Atkir		
							PRO 1	- 5 - 2			EXAM	9/13		Copyrig	ht © 200	9 HAC
Combinatio	ons	ψ=		1.0			1.	n			1.0			1.0	n	
Service		\$1 \$2		SW SW		, I	Nater a				1.0			Water a	-	
		S3	4.05	SW	4.0		th & Wa	ater at		Su	ircharg	е			<u> </u>	
Ultimate		U1	SW	1.35	1.0		1.3				1.5			1. Water a		
		U2 U3		SW	SW		Nater a th & Wa			Su	ircharg	е				
Forces			EA pro	ograms	gene	n = Axi rate outp sy can be	out as s	tress		Values	per ele	ement v	vidth o	M = Mo or per m MAIN sl	for FEA	
Walls		Panel ² S1	1 S2	H = S3	600] U1	U2	U3		Panel 2 S1	2 S2	H = [S3	600	U1	U2	U
Vert Base		31	52				02				52				02	0.
	n V	229	220	183		275	297	247		230	170	167		276	230	225
	N M	-168 368	-137 296	150 -225		-202 442	-185 400	203 -304		-148 215	-124 209	140 -173		-178 258	-167 282	189 -234
Vert Span																
	n V	30	20	20		36	27	27		20	10	20		24	14	27
	N M	30 -92	30 -67	70 62		36 -110	41 -90	95 84		20 -84	20 -62	60 58		24 -101	27 -84	8 ² 78
Hor Corn	v															
	n V	162	125	115		194	169	155		162	125	115		194	169	155
	N M	-154 316	-123 205	110 -131		-185 379	-166 277	149 -177		-154 316	-110 205	110 -131		-185 379	-149 277	149 -177
Hor Span	v															
	n V	20	10	5		24	14	7		20	20	5		24	27	7
	Ň M	-97 -162	-90 -86	40 57		-116 -194	-122 -116	54 77		-158 -151	-92 -69	56 35		-190 -181	-124 -93	, 76 47
Base Slab		X Dir		H =	600					Y Dir						
At Wall	v	S1	S2	 		<u>U1</u>	U2	U3		S1	S2	S3		U1	U2	U
	n V	280	212	130		336	286	176		230	205	120		276	277	162
	N M	-242 368	-212 -215 300	184 -225		-290 442	-290 405	248		-195 215	-172 209	163		-234 258	-232 282	220
Column		300	300	-225		442	405	-304		215	209	-173		200	202	-234
Column Strip at	v n Di	4 4 0 4	10.40	40.4		4750	1010	- / -		1404	1000	40.4		4750	4754	
Pile T	Pi N	1461 -226	1342 -200	-404 172		1753 -271	1812 -270	-545 232		1461 -145	1300 -121	-404 127		1753 -174	1754 -163	-545 171
	М	216	180	-50		259	243	-68		216	180	-40		259	243	-54
Middle Strip at	v n															
Supp T	V N	80 -226	70 -200	30 172		96 -271	95 -270	41 232		90 -145	80 -121	50 127		108 -174	108 -163	68 171
	М	50	45	-50		60	61	-68		88	66	-50		106	89	-68
Span Strips B	v n															
ouiha p	V	50	45	30		60	61	41		50	50	50		60	68	68
	N M	-226 -136	-200 -120	172 92		-271 -163	-270 -162	232 124		-145 -88	-121 -80	127 40		-174 -106	-163 -108	171 54
			1167	-351		1565	1575	-474		1270	1130	-351		1565	1526	-474

			EC2 DESIGN	TOOL		H	$A \begin{bmatrix} C \end{bmatrix}^{78}$
			WORKED EX	AMPLE		Howes Atkin	son Crowder LLP
			HAC-PRO 1 -	5 - 2	EXAM 10/13	Copyrigh	nt © 2009 HAC
Reinford	cement						
All Reinf	orcement and Se	ection Compliance i	is calculated and	displayed via th	ne MAIN sheet		
Typical C	Calculations Inpu	ut					
Shear, A	xial and Moment	ts	Above values are	copied and pas	ted into the MA	IN sheet	
Shrinkag	le		This sheet allows and derive actual The values are co	restraint values			heet
Walls	Shrinkage D	ata		Formwork	Llumidity	Fmwk	Ply
	Edge Restra	int Values		Faces & Rel T1 value or A Seasonal Te	Auto		Auto 20
	Ref R	ontal Edge Restraint Restraint Diagram ted to suit C660	Wall H Edge Restr Base	•		R1	Edge 0.60 0.60 0.30
	Ref R	ontal Edge Restraint testraint Diagram ted to suit C660	Wall H Edge Restr Mid Ht			R1	Edge 0.35 0.35 0.15
	Ref R	al Edge Restraint lestraint Diagram ted to suit C660	Wall V Edge Restr Base			R1	Edge 0.35 0.35 0.00
Slab	Shrinkage D	ata		Formwork	I I. mainlike	Fmwk	
	End Restrair	nt Values		Faces & Rel T1 value or A Seasonal Te	Auto		L & 95 Auto 15
	Assur	estraint ming near full restrair i Example	t Slab End Restr High			Restr R1 R2 R3	End 0.77 0.77 0.77
	Accor	Restraint rding To Pile Siffness Realistic Below	Slab End Restr Piles			Restr R1 R2 R3	End 0.20 0.20 0.20
	Actual End	Restraint Offered B	y Piles				
	Free Strain	due to T2 = 15	deg & alpha =	12 =	180 με		
	Maximum Re	estrained Strain	= 0.65 ×	180 =	117 με	`	
	Free Shrinka Free Shrinka		due to T2 = 1 due to T2 = 1	•	na = <u>12</u> na = <u>12</u>	= 1.44 n = 0.72 n	
	Pile Resistar	nce = 150 kN pe	er mm Sla	b = 12]m x [600 mm	
	Force at Cer	$tre = \begin{bmatrix} 4 & x \\ 4 & x \end{bmatrix}$	150 x 1.4 150 x 0.7		864 kN 432 kN	= 1296 k	N
	Average Res	strained Stress	0.65 x 12	96 / (12	x 600)= 0.18 N	l / mm²
	Average Res	strained Strain = Stre	ss / (Es / MR28) =	0.18 / (200 /	6.09) =	5 με
	Therefore Ma	aximum End Restrair	nt Factor R =	6 / 117	= 0.047	Adopt	0.2



kΝ

kNm

For a	Hinged	Base
-------	--------	------

Hoop Tension per M width = 623 Vertical Moment in Wall = 33

	EC2 DESIGN TOO	DL	H A C
	THERMAL, SHRINKAGE, REST	RAINT & CREEP	Howes Atkinson Crowder LL
	HAC-PRO 1 - 5 - 2	2 RESTR 1	Copyright © 2009 HAC
Control Of Cracking	g Due To Restrained Shrinkage	Ref:- EC2 Pt 3 &	CIRIA C660
Free Shrinkage Stra	ain ε Types		
Thermal T x α Autogenous Ag Drying Cd	Temperature Drop x Coefficient of Expansion Due to the chemical reaction causing a reduced Due to the drying out of the concrete over the	uction in volume.	gregate Type
Restraint Types			
Edge End Internal	Induces cracking strain due to restraint at s Induces cracking strain due to restraint at e Induces cracking strain due to restraint cau	nds or from piles or groun	
Restraint Values			
R1, R2, R3	R varies between 1 for Full and 0 for None.	Suffix denotes Shrinkage	Stage - see below.
Creep Factor K1			
K1 Value	Due to relaxation of the concrete under load	d. Fixed at 0.65 at all stag	es.
Restrained Strain		ays to 28 days 2 (T2 α + Ag2) +	28 Days to LT k1 R3 Drying

Key Data Affecting Shrinkage and Strain Capacity

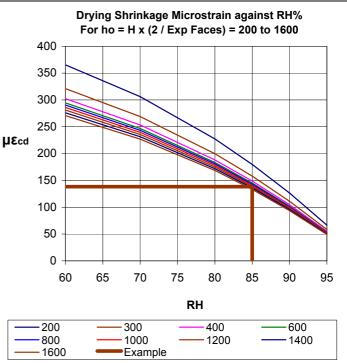
Example Val Strength	30	1	37	Ult Microstrain	Capacity			Agg	Exp
LT Drying Pe	eriod	60	Yrs	Aggregate	3 Day	28 Day	LT	Factor	μά
LT Strength	at	60	Yrs	Basalt	63	90	98	0.826	10
LT Strain at		60	Yrs	Default	76	109	119	1	12
Creep K1	=		0.65	Dolomite	85	122	133	1.119	9
R1	=		0.32	Flint	65	93	102	0.853	12
R2	=		0.40	Gabbro	75	108	118	0.991	10
R3	=		0.19	Granite	75	108	118	0.991	10
Aggregate	=	D	efault	Limestone	85	122	133	1.119	9
3 Day με	=		76	Quartzite	76	109	119	1	14
28 Day με	=		109	Sandstone	108	155	169	1.422	12.5
LT με	=		119.1					Gain bey	ond 28
Agg Factor	=		1	Autogenous	15	33	50	is within	Drying
Εχρ μα	=		12	-				If Drying	> Gain

Variation Of Values According To Strength and Age

	At 28 Da	ys	Strength	Factors			Ag	e Fact	ors
Concrete Strength Fck	30	30 / 37	32 / 40	35 / 45	40 / 50		3D	28D	LT
µStrain Capacity	109	1.000	1.030	1.080	1.130		0.698	1	1.092
Autogenous µStrain	33	1.000	1.100	1.250	1.500	х	0.448	1	1.531
Drying Shrinkage µStrain	1	1.000	0.976	0.942	0.887	Age	0	0	1.000
Fctm N/mm2	2.90	1.000	1.067	1.167	1.333	Factor	0.598	1	1.174
Modular Ratio	6.09	1.000	1.015	1.040	1.073		1.167	1	0.930

Note: If drying shrinkage is based on Fck = 30 N/mm² the reduction where Fck = 32 N/mm² is < 3%.

CIRIA C660 LT Values


C660 advises using the 28 Day Strain Capacity, Tensile Strength and Modular Ratio for the Long Term (LT) stage check. This program allows the full LT values to be displayed and used for information and to demonstrate the effects.

	THERMAL, SHRINKAGE, RES				
	THEINMAL, SHININAGE, RES	TRAINT &	CREEP	Но	wes Atkinson Crowder L
	HAC-PRO 1 - 5 -	2	RESTR 2		Copyright © 2009 HAC
Shrinkage Cont.					
Thermal Strain Due To T1	Curing Temperature Drop				mperature Rise in
Fresh concrete heats up as It is called heat of hydration	a result of the chemical reaction.	50 60 -		s (for 350 C660 Fig 4	kg / m3 CEM 1) Ref I.2
This process takes about 24	t hours to reach a peak temperature.	50 -			
The rise is dependant on the cement content, formwork a		40 - T 30 -	1		
It then cools down to the an 2 to 6 days and shrinks.	nbient temperature over the next	20 -			
The rate at which it cools do and strike time and external	own depends on the type of formwork temperature.	0	1 2	3 4	5 6 7
Shrinkage Calculations assu	ume the cooling is complete at 3 days.			Days	
Thermel strein Due Te T2	Second Temperature Dren	-	Steel	-	18mm Ply
	Seasonal Temperature Drop				
	deg for exposed structures and 15 deg for rogram conservatively assumes that T2 dr			veen 3 d	ays and 28 days

Based On Da Control Shee		Basic Value	ho	200	300	400	500	600	700	800	900	1000	1200	1400	1600	Value Used
RH%	85	με	kh	0.85	0.75	0.71	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	με
Period - Yrs	60	432.1	60	365	321	302	296	295	293	290	288	286	281	276	271	
Fck - N/mm ²	30	362.1	70	306	269	253	248	247	245	243	242	240	236	231	227	
Depth H	600	269	80	227	200	188	185	183	182	181	179	178	175	172	169	
Exp Faces	1	212.7	85	180	158	149	146	145	144	143	142	141	138	136	133	138.4
u = 2 / Exp	2	149.4	90	126	111	105	102	102	101	100	100	99	97	95	94	
ho =	1200	79	95	66	58	55	54	54	53	53	52	52	51	50	49	

ExampleFrom Table=138μεFrom charts or formulaLT Strain=Maximum of:-(LT Autogenous - 28 Day Autogenous) & Drying Shrinkage

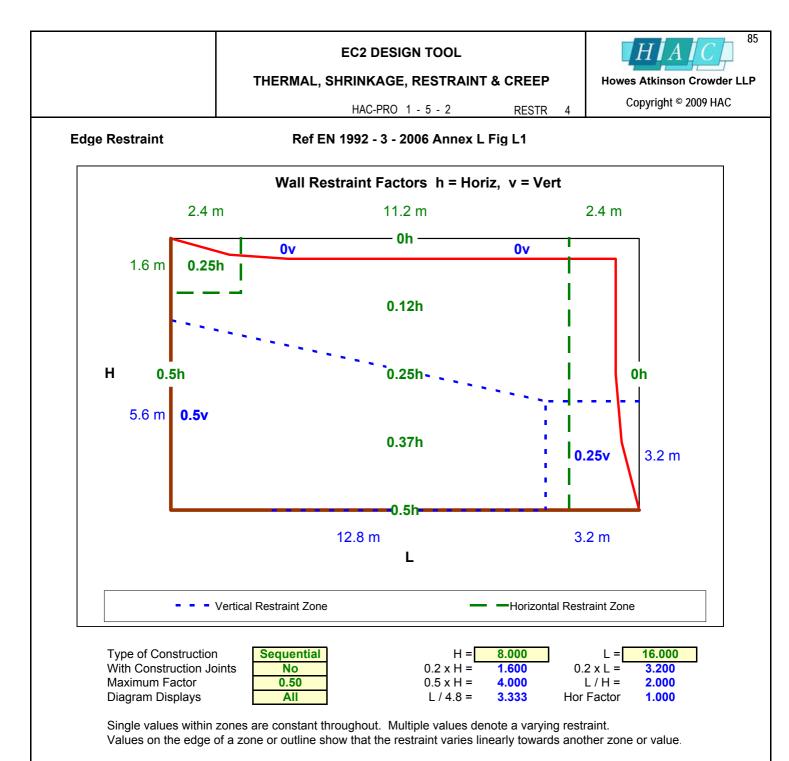
Drying Shrinkage Microstrain Against ho = H x (2 / Exp Faces) For Values of RH% 400 400 350 350 300 300 250 250 μ**ε**cd **με**cd 200 200 150 150 100 100 50 50 0 0 400 600 800 1000 1200 1400 1600 200 60 65 ho 60% •70% 80% 200 85% 90% 95% 800 Example

με

με

138.4

138.4


=

=

					EC2 [DESIGN -	FOOL					H A	[C]
			THE	RMAL,	SHRINK	AGE, RE	STRAIN	NT & C	REEP		Howe	es Atkinson	Crowde
					HAC-	PRO 1 - {	5 - 2		RESTR	3	(Copyright © 3	2009 HA
Drying S	hrinkage C	ont.											
Drying Sh	rinkage Equ	ations		Ref E	N 1992-1-	1							
Equ B.11	Ва	sic strain		εcd,0	= 0.85 x	(220 + 11	0 x αds1) x exp	(- αds2	x fcm /	10) x 10	0E-6 x βRH	l
Equ B.12				βRH =	= 1.55 x (1 - (RH%	/ 100)³		exp(VA	LUE)	= 2	2.718 ^{value}	
	Fc	r Class	S N R	ads1 ads1 ads1	= = =	3 4 6	ads2 ads2 ads2	= = =	0.13 0.12 0.11		Note: f	cm = fck + a	8 N/mr
Equ 3.9	St	ain at Tir	ne t day	ys	$\epsilon cd(t) =$	βds(t,ts) :	κ kh x εco	d,0		ts = sta	art time i	in days	
	lf	Exp Face	s = 2, ł	no = h	lf	Exp Face	s = 1, hc	o = 2h					
		no >=500 no <=100			0	therwise,	kh = 0.	.7 + (0.	.3 x (500) - ho)	/ 400)		
Equ 3.10	βα	s(t,ts) = (t - ts) / (((t - ts) -	+ (0.04 x ⁻	√ho³)) =	t / (t +	-(0.04	x √ho³))	If ts is ta	aken as 0	
			Fck	= 30	N / mm²	Dryir	ng Period	1 =	60	Yrs	=	21915	Days
		For ho				ge Micro s) = 200					g Perio	od	
	400	For ho									g Perio	od	
	400	For ho									g Perio	od	
		For ho									g Perio	od	
µ£ cd	350	For ho									g Perio	od	
µ£ сd	350	For ho									g Perio	od	
µ£ cd	350 300 250	For ho									g Perio	od	
µ£ сd	350 300 250 200	For ho									g Perio	od	
µ£ сd	350 300 250 200 150	For ho									g Perio	od	

RH200
300
400
600
800

1000
1200
1400
1600
Example

Horizontal Central Zone Centreline Values For Isolated and Sequential Cases

L/H 1 2	At Base 0.5 0.5	At Top 0 0		EC2 Pt 3 Fig L1 values x Fa by L / 4.8 if L < 4.8m	actor / 0.5	
3	0.5	0.05	The values are a r	minimum of 0.25 x Creep Fa	actor / 0.5	
4	0.5	0.3	if construction join	ts are included. (BS8007 or	nly)	
>=8	0.5	0.5		· ·	• ·	
2.000	0.50	0.00	Design Values for	chosen case are shown in	bold	
Vertical Central Z Vertical Central Z			Where L <= 2H Where L <= H	R = CF (1 - L / 2H) R = CF (1 - L / H)	Design = Design =	N/A N/A

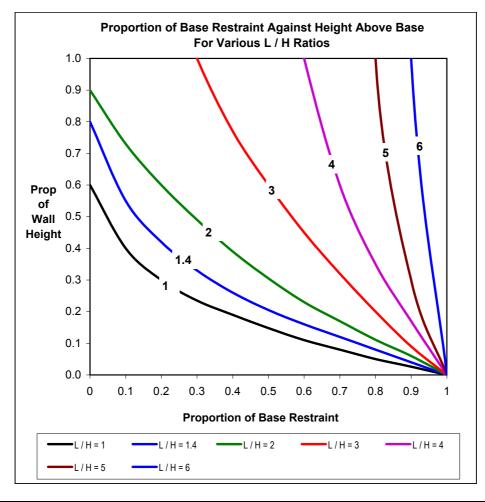
VERY IMPORTANT NOTE

These values and diagrams were previously included in BS8007 and are now included in EN1992 - 3 EC2 Pt3 Fig L1 includes a Creep Factor of 0.5 (Ref A.5). C660 uses a creep factor of 0.65 with unfactored R values. If the published chart values are used with a C660 calculation:-

Multiply all values by (1 / .65 = 1.54) and use K1 = 0.65 in C660 calculations

Note:- 0.5 x 1.54 = 0.77

It is vital that the designer makes it absolutely clear what has been done.


The following C660 method shows the restraint is generally < 0.77 unless the wall / base section areas ratio is very small.

					EC	2 DES	IGN T	OOL					H	
			THER	MAL,	SHRIN	IKAG	E, RES	STRA	INT &	CREEP		How	es At	kinson Crowder L
					HA	AC-PRC) 1 - 5	- 2		RESTR	5		Сору	right © 2009 HAC
Edge Restraint C	Cont.													
Ref C660 Equ 4.6														
Restraint at Joint			Rj	=	1	1	(1+((An /	Ao) x	(En / Eo))			
Where	An Ao En Eo	= = = =	Cross Moduli	Sectio	on Area on Area Elasticity Elasticity	of old i of ne	restrain w pour	ing co concre	ncrete	sumed 0.7	7 x Eo)		
Example	Wall		ht H	= =		m m		Base		Width H	= =	8 0.4	m m	
	Ao An	= =	8 8	x x	0.4 0.3	= =	3.2 2.4			An / Ao En / Eo	= =	0.75 0.7		
	Rj	=	1	1	(+ (0.75	x	0.7))	=	0.656		
Simplified Method	For a v	/all ca	st at the st remo ast agair	te fror	n the ed	lge of a	a slab		An / A An / A An / A	0	= = =	hn hn hn	 	ho 2ho ho
	An / Ac)	=		0.3	/	0.4		=	0.75				
	Rj	=	1	1	(+ (0.75	х	0.7))	=	0.66		
	THESE		UES DO	о мот	. INCLU	DE CF	REEP							

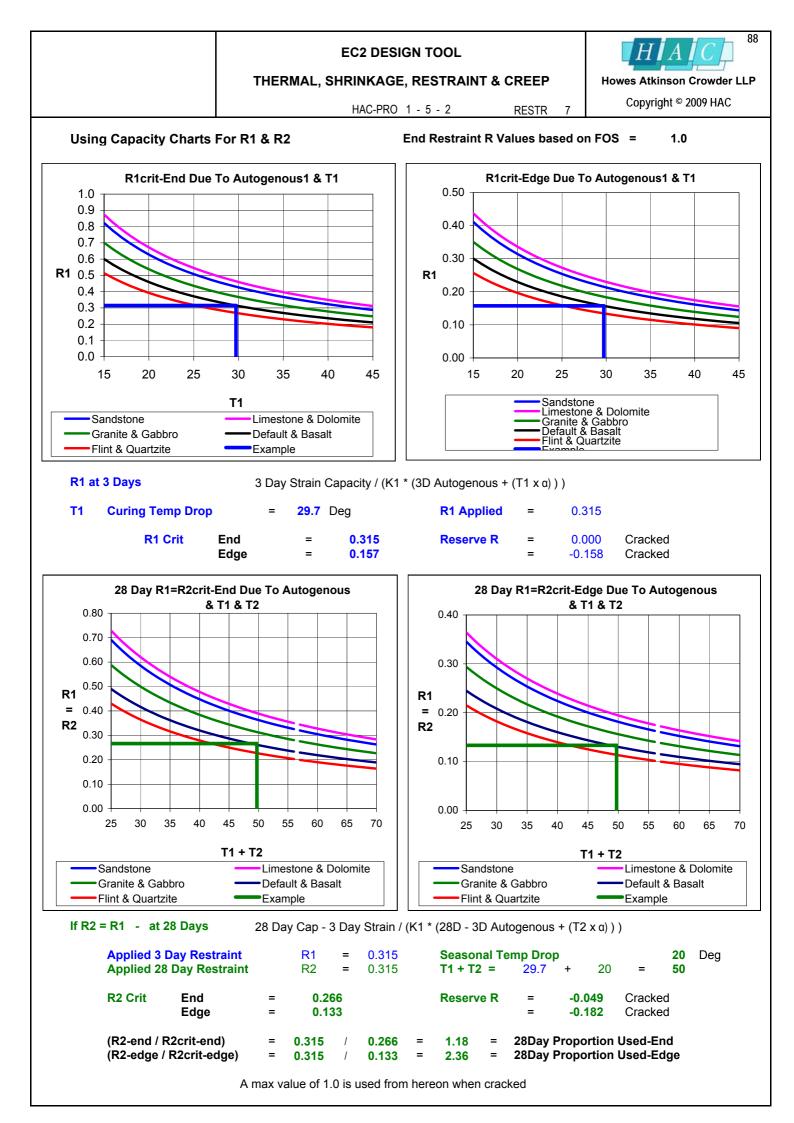
Variation of Horizontal Restraint According To Height Above Base

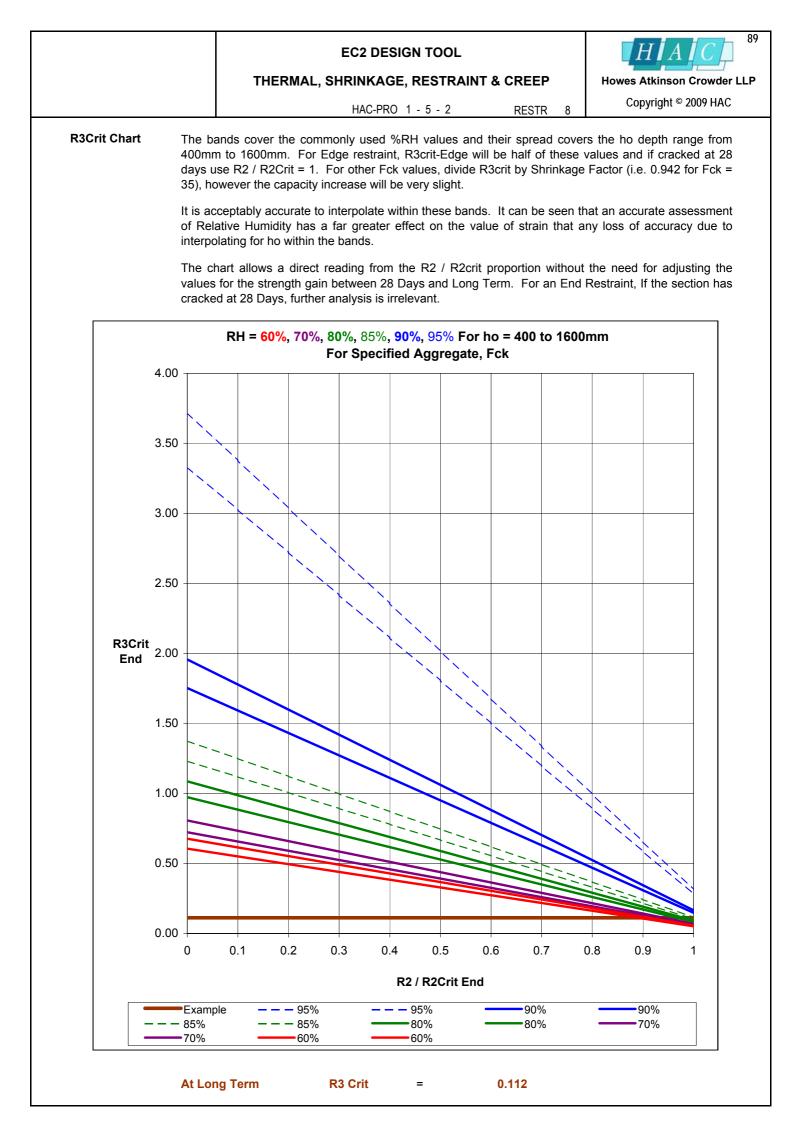
Ref CIRIA Figure 4.17 and Enborg 2003 This can be

This can be compared with the data on previous page

		EC2 DESIGN T	OOL		
		THERMAL, SHRINKAGE, RES	STRAINT &	CREEP	Howes Atkinson Crowder
		HAC-PRO 1 - 5		RESTR 6	Copyright © 2009 HAC
End Rest	traint				
					}
н					
		L			
Walls can	be restrained w	hen a new section is placed between previo	ously cured s	sections or existi	ng structures.
		when a new section is placed between previon n a similar way but also by friction, pile stiffn			
Slabs can Where the	be restrained in restraint is a ro	n a similar way but also by friction, pile stiffn obust immovable existing structure R should	less and or p d be = 1.0.	assive resistanc	e.
Slabs can Where the	be restrained in restraint is a ro	n a similar way but also by friction, pile stiffn	less and or p d be = 1.0.	assive resistanc	e.
Slabs can Where the Conseque Note. Whe	be restrained ir e restraint is a ro ntly, it is advisa en a tank is in s	n a similar way but also by friction, pile stiffn obust immovable existing structure R should able to try and arrange structures and pours service or is buried, the liquid retaining faces	bess and or p t be = 1.0. to minimize s should not o	eassive resistance End Restraints v experience any	e. vherever possible. drying shrinkage.
Slabs can Where the Conseque Note. Whe Therefore	be restrained in e restraint is a ro ntly, it is advisa en a tank is in s in those circum	n a similar way but also by friction, pile stiffn obust immovable existing structure R should able to try and arrange structures and pours service or is buried, the liquid retaining faces istances the design need only consider T1 &	bess and or p t be = 1.0. to minimize s should not o	eassive resistance End Restraints v experience any	e. vherever possible. drying shrinkage.
Slabs can Where the Conseque Note. Whe Therefore	be restrained ir e restraint is a ro- ntly, it is advisa en a tank is in s in those circum ate Restraint F	n a similar way but also by friction, pile stiffn obust immovable existing structure R should able to try and arrange structures and pours service or is buried, the liquid retaining faces instances the design need only consider T1 & From Piles or Passive Resistance.	to minimize s should not A Autogenou	End Restraints v End Restraints v experience any s 1 and T2 and J	e. vherever possible. drying shrinkage. Autogenous 2.
Slabs can Where the Conseque Note. Whe Therefore	be restrained ir e restraint is a ro- ntly, it is advisa en a tank is in s in those circum ate Restraint F	n a similar way but also by friction, pile stiffn obust immovable existing structure R should able to try and arrange structures and pours service or is buried, the liquid retaining faces istances the design need only consider T1 &	bess and or p t be = 1.0. to minimize s should not o	End Restraints v End Restraints v experience any s 1 and T2 and J	e. vherever possible. drying shrinkage. Autogenous 2.
Slabs can Where the Conseque Note. Whe Therefore To Calcula	be restrained ir e restraint is a ro ntly, it is advisa en a tank is in s in those circum ate Restraint F Establish th	n a similar way but also by friction, pile stiffn obust immovable existing structure R should able to try and arrange structures and pours service or is buried, the liquid retaining faces instances the design need only consider T1 & From Piles or Passive Resistance.	to minimize s should not A Autogenou	End Restraints v End Restraints v experience any s 1 and T2 and J	e. vherever possible. drying shrinkage. Autogenous 2.
Slabs can Where the Conseque Note. Whe Therefore To Calcula 1	be restrained ir e restraint is a ro ntly, it is advisa en a tank is in s in those circum ate Restraint F Establish th	n a similar way but also by friction, pile stiffn obust immovable existing structure R should able to try and arrange structures and pours service or is buried, the liquid retaining faces instances the design need only consider T1 & From Piles or Passive Resistance. The sources of Restraint and check at analysis computer model or manually:- Set Ec = the full 28 day value and do not	to minimize s should not of A Autogenou 3 Days or allow for cre	End Restraints we experience any s 1 and T2 and 28 Days or eep coefficient.	e. vherever possible. drying shrinkage. Autogenous 2.
Slabs can Where the Conseque Note. Whe Therefore To Calcula 1	be restrained ir e restraint is a ro ntly, it is advisa en a tank is in s in those circum ate Restraint F Establish th Using the a	n a similar way but also by friction, pile stiffn obust immovable existing structure R should able to try and arrange structures and pours service or is buried, the liquid retaining faces instances the design need only consider T1 & From Piles or Passive Resistance. The sources of Restraint and check at analysis computer model or manually:- Set Ec = the full 28 day value and do not The 3 day adjustment factor is 0.86 and the	to minimize s should not of A Autogenou 3 Days or allow for cre	End Restraints we experience any s 1 and T2 and 28 Days or eep coefficient.	e. vherever possible. drying shrinkage. Autogenous 2.
Slabs can Where the Conseque Note. Whe Therefore To Calcula 1	be restrained ir e restraint is a ro ntly, it is advisa en a tank is in s in those circum ate Restraint F Establish th Using the a	n a similar way but also by friction, pile stiffn obust immovable existing structure R should able to try and arrange structures and pours service or is buried, the liquid retaining faces instances the design need only consider T1 & From Piles or Passive Resistance. The sources of Restraint and check at analysis computer model or manually:- Set Ec = the full 28 day value and do not	to minimize s should not of A Autogenou 3 Days or allow for created by the LT factor	End Restraints we experience any s s 1 and T2 and s 28 Days or 28 Days or eep coefficient. is 1.07.	e. vherever possible. drying shrinkage. Autogenous 2.
Slabs can Where the Conseque Note. Whe Therefore To Calcula 1	be restrained ir e restraint is a ro ntly, it is advisa en a tank is in s in those circum ate Restraint F Establish th Using the a	n a similar way but also by friction, pile stiffn obust immovable existing structure R should able to try and arrange structures and pours service or is buried, the liquid retaining faces istances the design need only consider T1 & From Piles or Passive Resistance. The sources of Restraint and check at analysis computer model or manually:- Set Ec = the full 28 day value and do not The 3 day adjustment factor is 0.86 and f Set the correct coeff of expansion Consider a load case with a 15 degree te Restrain the structure horizontally at end	to minimize s should not of A Autogenou 3 Days or allow for create the LT factor emperature d s and calcula	End Restraints we experience any solutions solution 1 and T2 and solution 28 Days or 28 Days or 28 Days or eep coefficient. is 1.07. arop say. ate the restrained	vherever possible. drying shrinkage. Autogenous 2. Long Term
Slabs can Where the Conseque Note. Whe Therefore To Calcula 1	be restrained ir e restraint is a ro ntly, it is advisa en a tank is in s in those circum ate Restraint F Establish th Using the a A	n a similar way but also by friction, pile stiffn obust immovable existing structure R should able to try and arrange structures and pours service or is buried, the liquid retaining faces istances the design need only consider T1 & From Piles or Passive Resistance. The sources of Restraint and check at analysis computer model or manually:- Set Ec = the full 28 day value and do not The 3 day adjustment factor is 0.86 and the Set the correct coeff of expansion Consider a load case with a 15 degree te	to minimize s should not of A Autogenou 3 Days or allow for create the LT factor emperature d s and calcula	End Restraints we experience any solutions solution 1 and T2 and solution 28 Days or 28 Days or 28 Days or eep coefficient. is 1.07. arop say. ate the restrained	vherever possible. drying shrinkage. Autogenous 2. Long Term

- For Piles and or Passive Resistance test at 50% of the vertical settlement stiffness. Record the stresses at the centre and outwardly between restraints. Multiply these values by 3 Day and LT Ec factors if required.
 - You will note that the piles offer a cumulative but reducing restraint towards the centre.


3.40


D The Restraint Factor R will be:- Stress Due to C / Stress due to B

To Calculate Restraint from Friction

1 Where friction exceeds the tensile strength, no movement can occur so full restraint occurs and R = 1.

- 2 Establish the coefficient of friction μ or assume 0.7 say.
- 3 Establish the fctm in N/mm² at 3D, 28D & LT For Fck = 30 N/mm² 1.73 2.90
- Apply horizontal loads to the slab = Vertical Load $x \mu$ away from each centre line and analyse.
- 5 Record the stress at each centre line and compare it with the appropriate tensile stress capacity fctm.
- 6 If k1 (= 0.65) x Stress is more than the appropriate fctm value, the slab cannot slide and Rmax = 1.
- 7 If k1 (= 0.65) x Stress is less than the appropriate fctm value, Rmax = 0.65 x Stress / fctm
- 8 Care must be used in calculating the empty condition as the weight of walls must be added.
 9 This analysis must be performed using the loads which apply at the stages considered.
- 10 Therefore, for T2 and Long Term it would be prudent to assume the tank is full.

THERMAL, SHRINKAGE, RESTRAINT & CREEP

HAC-PRO 1 - 5 - 2

Copyright © 2009 HAC

End Restraint Crack Development

General

- fctm3 is 0.6fctm28 and fctmLT = 1.17fctm28
- εCap3 is 0.7εCap28 and εCapLT = 1.09εCap28
- See adjacent chart for values up to 1000 days.
- Cracks occur if Restrained Strain is > Capacity.
- A crack will cause a reduction in concrete strain.
- End Restraint cracks form at the weakest point.
- Crack width = Srmax x Strain based on fctm(t).
- Srmax is 2 x bond length x factors + 3.4 x Cover.
- Srmax is NOT the End Restraint crack spacing.
- Cracks will widen until another crack forms.

At 3 Days - Includes Curing Temperature Drop T1

- The stage also includes small autogenous strain.
- No cracks occur if the R and T1 are low enough.
- The first crack may occur before 3 Days.
- Further strain widens the crack before another crack forms.
- This process continues until no more cracks form.

At 28 Days - Includes Seasonal Temperature Drop T2

- This stage is used to check T2 strain effects.
- T2 = 20° for exposed and 15° for buried elements.
- Further small autogenous strain occurs.
- The strain is checked against the 28 day capacity.
- 28 Day cracks will be 70% wider than 3 Day cracks.

At Long term - Includes Drying Shrinkage

- This shrinkage is due to Autogenous and Drying .
- The small amount of autogenous strain is included within the Drying Shrinkage.
- The rate of increase in drying shrinkage is slower than the small increase in strain capacity.
- 70 % of the Drying Strain has occurred after 7 years it takes up to 60 yrs for the process to complete.
- If the section is uncracked at 28 Day and Long term it will not have cracked in between.
- Drying shrinkage is primarily dependent on the Relative Humidity.
- Drying Shrinkage may be ignored where the face is permanently exposed to a liquid.
- A Long Term stage crack width will be 17% wider than a 28 Day crack.

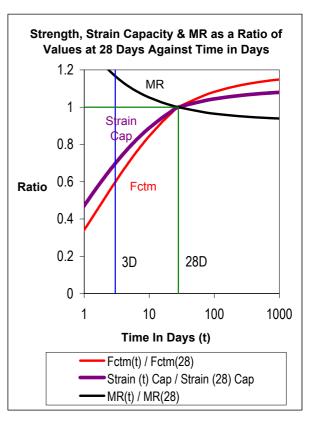
Crack Width Scenarios Assuming Strain Increases After First Crack

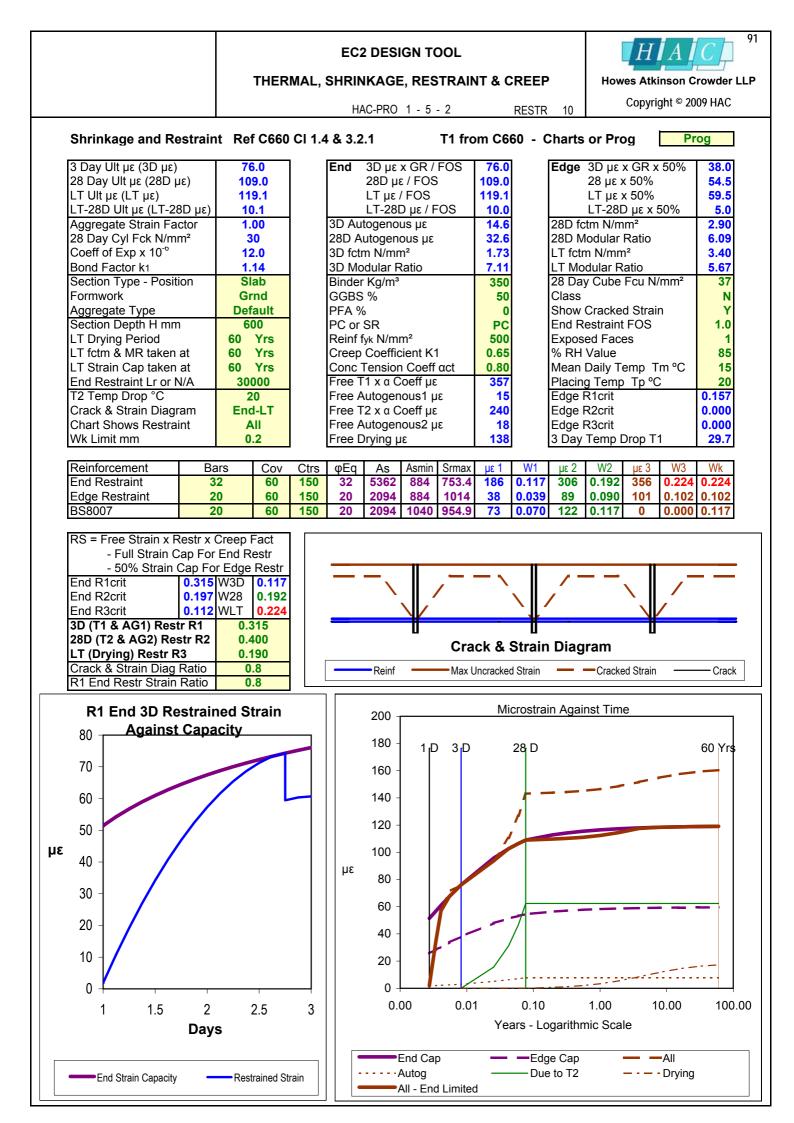
 C660 makes the checks at 3D, 28D and LT. When a crack forms at 3 or 28 Days, it will increase in width (W +) if there is an increase in strain and capacity. W + will be proportional to the ratio of (restrained strain increase / strain capacity increase between stages) and the increase in formed crack widths between stages (see below). If the increase in restrained strain begins to exceed the stage capacity, another crack will form.

3D to 28D	W + = (Additional Restrained Strain / (28D εCap - 3D εCap)) x (Cracked W2 - Cracked W1)
3D to LT	W + = (Additional Restrained Strain / (LT cCap - 3D cCap)) x (Cracked W3 - Cracked W1)

3D to LT W + = (Additional Restrained Strain / (LT ϵ Cap - 3D ϵ Cap)) x (Cracked W3 - Cracked W1) 28D to LT W + = (Additional Restrained Strain / (LT ϵ Cap - 28D ϵ Cap)) x (Cracked W3 - Cracked W2)

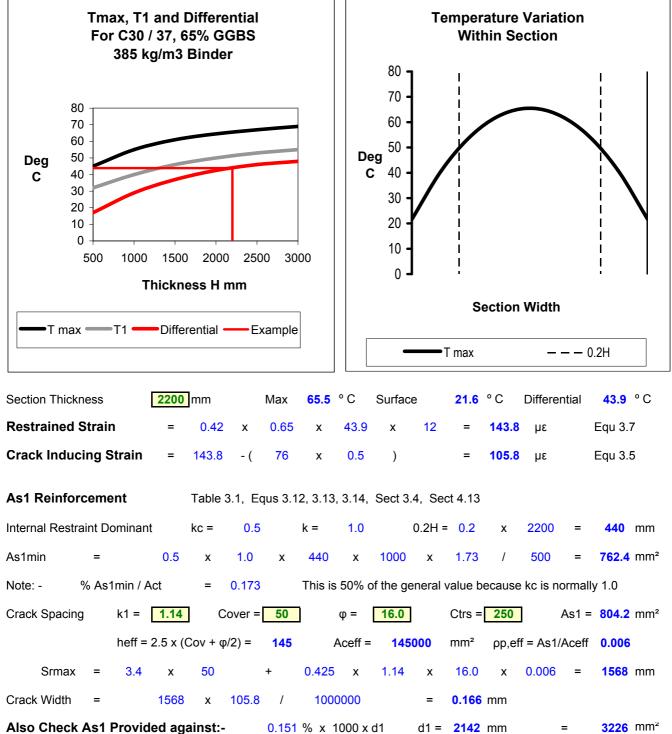
	Stages At Which Cracks Form	Due	1 e to T1 & A1 3D W1 mm	1 - 2 Due to T2 & A2 W + mm		2 At 28D W2 mm	2 - 3 Due to Drying W + mm		3 At LT W3mm
1 2 3 4	No Crack 28 D LT 28D & LT		0 0 0 0	0 0 0 0	C C	0 0.192 0 0.192	0 0.026 0 0.032	C C	0 0.218 0.224 0.224
5 6 7 8	3D 3D & 28D 3D & LT 3D & 28D & LT	С С С С	0.117 0.117 0.117 0.117	0.037 0.075 0.037 0.075	C C	0.154 0.192 0.154 0.192	0.026 0.026 0.070 0.032	C C	0.180 0.218 0.224 0.224


Long Term Values Used In ExampleMR & Strain Cap & Fctm Values at60


9

RESTR

0 Yrs


90

				EC	2 DES	GIGN TO	OOL					H		C_{T}
		THEF	RMAL,	SHRI	NKAG	E, RES	TRAII	NT & C	REEP	1	How	ves Atk	inson Cr	rowde
				Н	AC-PRC) 1 - 5 -	- 2		RESTR	11		Copyri	ght © 200	09 HAC
Example	Concrete	C	30	1	37		Aggre	egate	Defaul	lt				
Crack Width =	Crack Spaci	ng Srr	nax	х	Crac	k Induci	ng Str	ain CIS	;	х	Lr Fac	tor		
End Crack Inducir	ng Strain CIS	=	(1 / Es	s) x (0	.5 x kc	xkxα	ct)x (((fctm	x MR)	+ (fct	tm x 0.5	бхНх	1000 / /	As1))
Concrete in Tensi	-		=	0.8			-	Ratio M	-	=			Below	,,
For kc & k - Ref C	C660 Table 3.1	l				lf H >= 8 x (800			H = k =	600 0.85		For ext	ernal re kc =	strain 1.0
At 3 Days	fctm = 1.73		MR =	7.11							ed CIS		186	με
T1 Curing Tem	ıp Drop	=	29.7	Deg)S = 1) Id Cap)		76 38	3μ β
Free Strain = 3 Day	/ Autogenous	+ (T1:	x α)		=	15	+ (29.7	х	12) =	371	με	
K1 x Free Strain R1 x K1 x Basic Str	rain				=	0.65 0.32	x x	371 241			=	241 76	με με	
Strain - Capacity	End	76	; -	76	=	0	με				CIS	=	186	με
	Edge	76	; -	38	=	38						CIS =	38	με
At 28 Days	fctm = 2.9		MR =	6.1							ed CIS		306	με
T2 Seasonal To	emp Drop	=	20.0	Deg)S = 1) Id Cap)		109 55	3μ β
Free Strain = 3 to 2	8 Day Autoger	nous +	(T2 x (α)	=	18	+ (20.0	х	12) =	258	με	
K1 x Free Strain R2 x K1 x Basic Str	ain				=	0.65 0.40	x x	258 168			=	168 67	με με	
R1 x K1 x Strain1	-	train2			=	76	+	67			=	143	με	
			ain		=	0	+	67			=	67	βų	
If End Restraint is Otherwise, compa	cracked at 3 are the cumula	Days, tive 28	the extr 3D strai	in aga	in afte inst th	r 3 days e 28D ca	is con apacity	mpared y. Uncr	acked	3D str) - 3D c ain is a	apacity	y.	
	cracked at 3 are the cumula	Days, tive 28	the extr 3D strai	in aga	in afte inst th	r 3 days e 28D ca	is con apacity	mpared y. Uncr ased st	acked	3D str strenç) - 3D c ain is a	apacity added.	y.	
Otherwise, compa	cracked at 3 are the cumula cks from 3 Da End	Days, ative 28 ys inci 67	the extr 3D strai	in aga	in afte inst th	r 3 days e 28D ca	is con apacity	mpared y. Uncr ased st	acked a rain &	3D str strenç) - 3D c ain is a gth.	apacity idded. ed =	y	με με
Otherwise, compa End Restraint crac Strain - Capacity	cracked at 3 are the cumula cks from 3 Da End Edge	Days, ative 28 ys inci 67	the extr 3D strai rease ir -	in aga n width 33 55	in afte inst th n accor =	r 3 days e 28D ca rding to 34	is con apacity increa με με	mpared y. Uncr ased st 2	acked rain & 28D CIS 306	3D str streng S U or	D - 3D c rain is a gth. Incrack 0 CIS	apacity added. ed = =	y Strain 306 89	με
Otherwise, compa End Restraint crac	cracked at 3 are the cumula cks from 3 Da End	Days, ative 28 ys inci 67	the extr 3D strai rease ir	in aga n width 33	in afte inst th n accor =	r 3 days e 28D ca rding to 34 89	is con apacity increa με με Εnd St	mpared y. Uncr ased st 2 d Restr train Ca	acked : rain & 28D CIS 306 raint If apacity	3D str streng 6 U or Crack	D - 3D c rain is a gth. Incrack CIS ced CIS DS = 1)	apacity added. ed = = = =	y Strain 306 89 356 119	
Otherwise, compa End Restraint crac Strain - Capacity	cracked at 3 are the cumula cks from 3 Da End Edge	Days, ative 28 ys inci 67	the extr 3D strai rease ir -	in aga n width 33 55	in afte inst th n accor =	r 3 days e 28D ca rding to 34 89	is con apacity increa με με Εnd St	mpared y. Uncr ased st 2 d Restr train Ca	acked : rain & 28D CIS 306 raint If apacity	3D str streng 6 U or Crack	D - 3D c rain is a gth. Incrack 0 CIS	apacity added. ed = = = =	y Strain 306 89 356	με με
Otherwise, compa End Restraint crac Strain - Capacity Long Term Free Strain = Dry	cracked at 3 are the cumula cks from 3 Da End Edge fctm = 3.4	Days, ative 28 ys inci 67	the extr 3D strai rease ir -	in aga n width 33 55	in afte inst th acco = = =	r 3 days e 28D ca rding to 34 89 Edge From 1	is col apacity increa με με End St e Strai	mpared y. Uncr ased st 2 d Restr train Ca n Capa or Chart	acked rain & 28D CIS 306 raint If apacity city (50	3D str streng 6 U or Crack	0 - 3D c rain is a gth. Incrack 0 CIS red CIS 0S = 1) od Cap)) =	apacity added. ed = = = = = 138	y Strain 306 89 356 119 60 με	3ų sų sų
Otherwise, compa End Restraint crac Strain - Capacity Long Term	cracked at 3 are the cumula cks from 3 Da End Edge fctm = 3.4 /ing Strain	Days, ative 28 ys inci 67	the extr 3D strai rease ir -	in aga n width 33 55	in afte inst th accor = =	r 3 days e 28D ca rding to 34 89 Edge	is con apacity increa με με End Strai	mpared y. Uncr ased st 2 d Rest train Ca n Capa	acked rain & 28D CIS 306 raint If apacity city (50	3D str streng 6 U or Crack	0 - 3D c rain is a gth. Incrack 0 CIS red CIS 0S = 1) Id Cap)	apacity added. = = = = =	y Strain 306 89 356 119 60 με με	3ų sų sų
Otherwise, compa End Restraint crac Strain - Capacity Long Term Free Strain = Dry K1 x Free Strain R3 x K1 x Basic Str R1K1xStrain1 + R	cracked at 3 are the cumula cks from 3 Da End Edge fctm = 3.4 ying Strain rain 2K1xStrain2 +	Days, f itive 24 ys inci 67 143	the extr BD strai rease ir MR =	in aga n width 33 55 5.7	in afte inst th acco = = = = = =	r 3 days e 28D ca rding to 34 89 Edge From 1 0.65 0.19 76	is con apacity increa με Εnd St a Strai Γable c χ	mpared y. Uncr ased st 2 d Restr train Ca n Capa or Chart 138 90 67	acked rain & 28D CIS 306 raint If apacity city (50	3D str streng 6 U or Crack	0 - 3D c rain is a gth. Incrack 0 CIS ced CIS 0S = 1) od Cap)) = =	apacity added. ed = = = = 138 90 17 160	y Strain 306 89 356 119 60 με	3ų sų sų
Otherwise, compa End Restraint crac Strain - Capacity Long Term Free Strain = Dry K1 x Free Strain R3 x K1 x Basic Str	cracked at 3 are the cumula cks from 3 Da End Edge fctm = 3.4 ying Strain rain 2K1xStrain2 +	Days, f itive 24 ys inci 67 143	the extr BD strai rease ir MR =	in aga n width 33 55 5.7	in afte inst th acco = = = =	r 3 days e 28D ca rding to 34 89 Edge From 1 0.65 0.19	is con apacity increa με με End St a Strai Γable c χ χ	mpared y. Uncr ased st 2 d Restri train Ca n Capa or Chart 138 90	acked : rain & : 28D CIS 306 raint If apacity ccity (50 s	3D str streng 3 U or Crack 7 / (FC 0% En	0 - 3D c rain is a gth. Incrack 0 CIS red CIS 0S = 1) id Cap)) = = =	apacity added. = = = = 138 90 17	y Strain 306 89 356 119 60 με με με	3ų sų sų
Otherwise, compa End Restraint crac Strain - Capacity Long Term Free Strain = Dry K1 x Free Strain R3 x K1 x Basic Str R1K1xStrain1 + R Uncracked 28D End If End Restraint is	cracked at 3 ire the cumula cks from 3 Day End Edge fctm = 3.4 /ing Strain /ing Strain /ing Strain /ing Strain /ing Strain /ing Strain	Days, attive 24 ys inci 67 143 - R3K at 3 D	the extr BD strai rease ir	in aga width 33 55 5.7 5.7	in afte inst th a acco = = = = = = = = = a strair	r 3 days e 28D ca rding to 34 89 Edge From 1 0.65 0.19 76 0 a after 3	is con apacity increa με με End St a Strai fable c x x + + t days i	mpared y. Uncr ased st 2 d Restri- train Ca n Capa or Chart 138 90 67 17 is com	acked : rain & : 28D CIS 306 raint If apacity ccity (50 s +	3D str streng or Or Crack / (FC 0% En 17	0 - 3D c rain is a gth. Incrack 0 CIS (ced CIS (ced CIS (ced CIS (ced CIS) (ced CIS) (apacity added. ed = = = 138 90 17 160 17 5D capa	y Strain 306 89 356 119 60 με με με με με με	3ų sų sų
Otherwise, compa End Restraint crac Strain - Capacity Long Term Free Strain = Dry K1 x Free Strain R3 x K1 x Basic Str R1K1xStrain1 + R Uncracked 28D End	cracked at 3 ire the cumula cks from 3 Day End Edge fctm = 3.4 /ing Strain rain 2K1xStrain2 + d Strain + LT E only cracked cracked at 28 ire the cumula	Days, titve 24 ys inci 67 143 R3K at 3 D Days titve L	the extr BD strai rease ir - - - MR = 1xStrain ain ays, the , the ex T strain	in again width 33 55 5.7 5.7	in afte inst th acco = = = = = = = a strair rain fro ast the	r 3 days e 28D ca rding to 34 89 Edge From 1 0.65 0.19 76 0 a after 3 m 28 da LT capa	is con apacity increa με με End St e Strai Table o x x + + days is acity.	mpared y. Uncr ased st 2 d Restri- train Ca n Capa or Chart 138 90 67 17 is compa Uncrac ding to	acked : rain & : 28D CIS 306 raint If apacity city (50 s + pared a red aga ked stri increa	3D str streng S U or Crack 7 (FC 0% En 17 17 agains ainst L rain is sed s	0 - 3D c rain is a gth. Incrack 0 CIS (ced CIS (ced CIS (ced CIS (ced CIS) (ced CIS (ced CIS) (ced CIS (ced CIS) (ced CIS) (ced CIS (ced CIS) (ced	apacity added. ed = = = 138 90 17 160 17 5D capa capac. streng	y Strain 306 89 356 119 60 με με με με με με αcity ity	3ų sų sų
Otherwise, compa End Restraint crac Strain - Capacity Long Term Free Strain = Dry K1 x Free Strain R3 x K1 x Basic Str R1K1xStrain1 + R Uncracked 28D End If End Restraint is If End Restraint is Otherwise, compa End Restraint crac	cracked at 3 ire the cumula cks from 3 Day End Edge fctm = 3.4 /ing Strain //ing Strain //ing Strain //ing Strain //ing Strain //ing St	Days, f tive 24 ys incl 67 143 - R3K at 3 D B Days tive L ys and	the extr BD strai rease ir - - - MR = 1xStrain ain ays, the , the ex T strain	in aga width 33 55 5.7 5.7 13 e extra tra str again ys incr	in afte inst th acco = = = = = = = = = = = = = = = = = =	r 3 days e 28D ca rding to 34 89 Edge From 1 0.65 0.19 76 0 a after 3 m 28 da LT capa n width	is con apacity increa με με End St e Strai Table o X + + table strai days is acity. accord	mpared y. Uncr ased st 2 d Restri- train Ca n Capa or Chart 138 90 67 17 is compa Uncrac ding to	acked : rain & : 28D CIS 306 raint If apacity city (50 s + pared a red aga ked str increa LT CIS	3D str streng S U or Crack 7 (FC 0% En 17 17 agains ainst L rain is sed s) - 3D c rain is a gth. Incrack 0 CIS (ced CIS (ced CIS (ced CIS (ced CIS (ced CIS) (ced CIS (ced CIS) (ced CIS (ced CIS) (ced CIS (ced CIS) (ced CIS) (ced CIS (ced CIS) (ced C	apacity added. ed = = = 138 90 17 160 17 160 17 sD capa capac streng ed	y Strain 306 89 356 119 60 με με με με με με με με με με	με με με
Otherwise, compa End Restraint crac Strain - Capacity Long Term Free Strain = Dry K1 x Free Strain R3 x K1 x Basic Str R1K1xStrain1 + R Uncracked 28D End If End Restraint is If End Restraint is Otherwise, compa	cracked at 3 ire the cumula cks from 3 Day End Edge fctm = 3.4 /ing Strain rain 2K1xStrain2 + d Strain + LT E only cracked cracked at 28 ire the cumula	Days, tive 24 ys incl 67 143 67 143 67 at 3 Days at 3 D Days tive L ys and 17	the extr BD strai rease ir - - - MR = 1xStrain ain ays, the , the ex T strain	in again width 33 55 5.7 5.7	in afte inst th acco = = = = = = = a strair rain fro ast the	r 3 days e 28D ca rding to 34 89 Edge From 1 0.65 0.19 76 0 a after 3 m 28 da LT capa	is con apacity increa με με End St e Strai Table o x x + + days is acity.	mpared y. Uncr ased st 2 d Restri- train Ca n Capa or Chart 138 90 67 17 is compa Uncrac ding to	acked : rain & : 28D CIS 306 raint If apacity city (50 s + pared a red aga ked stri increa	3D str streng S U or Crack 7 (FC 0% En 17 17 agains ainst L rain is sed s	0 - 3D c rain is a gth. Incrack 0 CIS (ced CIS (ced CIS (ced CIS (ced CIS) (ced CIS (ced CIS) (ced CIS (ced CIS) (ced CIS) (ced CIS (ced CIS) (ced	apacity added. ed = = = 138 90 17 160 17 160 17 5D capa capac streng ed =	y Strain 306 89 356 119 60 με με με με με με με με με με	3ų sų sų
Otherwise, compa End Restraint crac Strain - Capacity Long Term Free Strain = Dry K1 x Free Strain R3 x K1 x Basic Str R1K1xStrain1 + R Uncracked 28D End If End Restraint is If End Restraint is Otherwise, compa End Restraint crac	cracked at 3 ire the cumula cks from 3 Day End Edge fctm = 3.4 /ing Strain //ing Strain //ing Strain //ing Strain //ing Strain //ing St	Days, tive 24 ys incl 67 143 67 143 67 at 3 Days at 3 D Days tive L ys and 17	the extra BD strai rease ir	in aga width 33 55 5.7 5.7 5.7 3 a e extra tra str again ys incr 10 60	in afte inst th acco = = = = = = = = = = = = = = = = = =	r 3 days e 28D ca rding to 34 89 Edge From 1 0.65 0.19 76 0 a after 3 m 28 da LT capa n width 7	is con apacity increa με με End St e Strai Table o x x + + days is accity. accord με με	mpared y. Uncr ased st 2 d Restr train Ca n Capa or Chart 138 90 67 17 is compa Uncrac ding to	acked : rain & : 28D CIS 306 raint If apacity city (50 s + pared a red aga ked str increa LT CIS 356	3D str streng S U or Crack 7 (FC 0% En 17 17 agains ainst L rain is sed s U or) - 3D c rain is a gth. Incrack 0 CIS ced CIS (S = 1) id Cap)) = = = = = = st LT - 3 T- 28D s added train & Incrack 0 CIS	apacity added. ed = = = 138 90 17 160 17 5D capa capac streng ed = =	y Strain 306 89 356 119 60 με με με με με με με με με με	με με με
Otherwise, compa End Restraint crac Strain - Capacity Long Term Free Strain = Dry K1 x Free Strain R3 x K1 x Basic Str R1K1xStrain1 + R Uncracked 28D End If End Restraint is If End Restraint is Otherwise, compa End Restraint crac Strain - Capacity	cracked at 3 ire the cumula cks from 3 Day End Edge fctm = 3.4 /ing Strain //ing St	Days, f attive 24 ys incl 67 143 67 143 67 at 3 Days attive L ys and 17 160	the extra BD strai rease ir	in aga width 33 55 5.7 5.7 5.7 3 a e extra tra str again ys incr 10 60	in afte inst th acco = = = = = = = = = = = = = = = = = =	r 3 days e 28D ca rding to 34 89 Edge From 1 0.65 0.19 76 0 r after 3 m 28 da LT capa n width 7 101	is con apacity increa με με End St e Strai Table o x x + + days is accity. accord με με	mpared y. Uncr ased st 2 d Restr train Ca n Capa or Chart 138 90 67 17 is compa Uncrac ding to	acked : rain & : 28D CIS 306 raint If apacity city (50 s + pared a red aga ked str increa LT CIS 356	3D str streng S U or Crack 7 (FC 0% En 17 17 agains ainst L rain is sed s U or) - 3D c rain is a gth. Incrack 0 CIS ced CIS (S = 1) id Cap)) = = = = = = st LT - 3 T- 28D s added train & Incrack 0 CIS	apacity added. ed = = = 138 90 17 160 17 5D capa capac streng ed = =	y Strain 306 89 356 119 60 με με με με με με με με με με	με με με
Otherwise, compa End Restraint crac Strain - Capacity Long Term Free Strain = Dry K1 x Free Strain R3 x K1 x Basic Str R1K1xStrain1 + R Uncracked 28D End If End Restraint is If End Restraint is Otherwise, compa End Restraint crac Strain - Capacity Crack Spacing Srr For End Restraint	cracked at 3 ire the cumula cks from 3 Day End Edge fctm = 3.4 /ing Strain //ing St	Days, fative 28 ys incl 67 143 67 143 67 143 67 167 at 3 D B Days at 3 D B Days at 3 D B Days at 17 160 17 160 = = =	the extr BD strai rease ir - - - MR = 1xStrain ain ays, the the extrain 28 Day - - - - - - - - - - - - - - - - - - -	in aga width 33 55 5.7 5.7 13 e extra tra str again ys incr 10 60 Cov +	in afte inst th acco = = = = = = = = = = = = = = = = = =	r 3 days e 28D ca rding to 34 89 Edge From 1 0.65 0.19 76 0 a fter 3 m 28 da LT capa n width 7 101 c (K2=1) 549 810	is con apacity increa με με End St e Strai Fable o x x + + days is acity. accoro με με	mpared y. Uncr ased st 2 d Rest train Ca n Capa or Chart 138 90 67 17 is compa Uncrac ding to 25 x φ / =	acked : rain & : 28D CIS 306 raint If apacity city (50 s + pared a red aga ked stu increa LT CIS 356 (As1 / 753 1014	3D str streng S U or Crack 7 (FC 0% En 17 agains ainst L rain is sed s or (1000 mm mm	0 - 3D c rain is a gth. Incrack 0 CIS (ced CIS (ced CIS (ced CIS (ced CIS (ced CIS) (ced CIS) (c	apacity added. ed = = = = 138 90 17 160 17 5D capac streng ed = = = (H - d)	y Strain 306 89 356 119 60 με με με με με με με με με με	με με με με
Otherwise, compa End Restraint crac Strain - Capacity Long Term Free Strain = Dry K1 x Free Strain R3 x K1 x Basic Str R1K1xStrain1 + R Uncracked 28D End If End Restraint is If End Restraint is Otherwise, compa End Restraint crac Strain - Capacity Crack Spacing Srr For End Restraint	cracked at 3 ire the cumula cks from 3 Day End Edge fctm = 3.4 /ing Strain 'ain '2K1xStrain2 + d Strain + LT E only cracked cracked at 28 ire the cumula cks from 3 Day End Edge max Reinf tt Reinf	Days, 5 attive 24 ys incl 67 143 67 143 67 at 3 Days attive L ys and 17 160 = =	the extr BD strai rease ir - - - MR = 1xStrain ain ays, the the extrain 28 Day - - - - - - - - - - - - - - - - - - -	in aga width 33 55 5.7 5.7 5.7 13 e extra tra str again ys incr 10 60 Cov +	in afte inst th acco = = = = = = = = = = = = = = = = = =	r 3 days e 28D ca rding to 34 89 Edge From 1 0.65 0.19 76 0 a fter 3 m 28 da LT capa n width 7 101 c (K2=1) 549 810	is con apacity increating $\mu\epsilon$ $\mu\epsilon$ End State Strait Sable of x x + + days is accord $\mu\epsilon$ $\mu\epsilon$ accord $\mu\epsilon$ $\mu\epsilon$ x x 0.42 Act = 0	mpared y. Uncr ased st 2 d Restr train Ca n Capa or Chart 138 90 67 17 is compa Uncrac ding to 25 x φ / = = 0.5 x H	acked : rain & : 28D CIS 306 raint If apacity city (50 s + pared a red aga ked str increa LT CIS 356 (As1 / 753 1014 x 1000	3D str streng S U or Crack 7 (FC 0% En 17 agains ainst L rain is sed s or (1000 mm mm	0 - 3D c rain is a gth. Incrack 0 CIS (ced CIS (ced CIS (ced CIS (ced CIS (ced CIS (ced CIS (ced CIS (ced CIS (ced CIS) (ced CIS (ced CIS) (ced CIS) (ced CIS (ced CIS) (ced CIS	apacity added. ed = = = 138 90 17 160 17 5D capa capac streng ed = = (H - d)	y Strain 306 89 356 119 60 με με με με με με με με με με	με με με με 255
Otherwise, compa End Restraint crac Strain - Capacity Long Term Free Strain = Dry K1 x Free Strain R3 x K1 x Basic Str R1K1xStrain1 + R Uncracked 28D End If End Restraint is If End Restraint is Otherwise, compa End Restraint crac Strain - Capacity Crack Spacing Srr For End Restraint For Edge Restraint For Edge Restraint Asmin per m width For First Cracking	cracked at 3 ire the cumula cks from 3 Day End Edge fctm = 3.4 /ing Strain 'ain '2K1xStrain2 + d Strain + LT E only cracked cracked at 28 ire the cumula cks from 3 Day End Edge max Reinf tt Reinf	Days, fative 28 ys incl 67 143 67 143 67 143 67 167 at 3 D B Days at 3 D B Days at 3 D B Days at 17 160 17 160 = = =	the extr BD strai rease ir - - - MR = 1xStrain ain ays, the the extrain 28 Day - - 3.4 x 0 204 204 204 204 204 3 Day 1 / (1	in again width 33 55 5.7 5.7 13 e extra tra str again ys incr 10 60 Cov +	in afte inst th acco = = = = = = = = = = = = = = = = = =	r 3 days e 28D ca rding to 34 89 Edge From 1 0.65 0.19 76 0 a after 3 m 28 da LT capa n width 7 101 c (K2=1) 549 810 cy mm ² Lr) (k	is con apacity increative $\mu\epsilon$ End State End State Strait Sable of x + + days is acity. accord $\mu\epsilon$ $\mu\epsilon$ $\mu\epsilon$ κ λ λ λ λ λ λ λ λ λ λ	mpared y. Uncr ased st 2 d Restit train Ca n Capa or Chart 138 90 67 17 is compa Uncrac ding to 25 x φ / = = 0.5 x H ys	acked : rain & : 28D CIS 306 raint If apacity city (50 s + pared a red aga ked stri increa LT CIS 356 (As1 / 753 1014 × 1000 1477	3D str streng S U or Crack / (FC 0% En 17 agains ainst L rain is sed s U or (1000 mm mm ² s1 / (0	0 - 3D c rain is a gth. Incrack 0 CIS (CIS (CIS (CIS)	apacity added. ed = = = 138 90 17 160 17 5D capac capac streng ed = = (H - d) epth = Term x 1000	y Strain 306 89 356 119 60 με με με με με με με με με 101 0.5 k H 1735 101)	με με με με 255

		-	THERMAL, S	HRINKAGE, RESTRAINT &)	Howes A	Atkinson Crowd
				HAC-PRO 1 - 5 - 2	RESTR	12	Cop	oyright © 2009 HA
Internal Restraint			Ref CIR	IA C660				
The restrained strain	is due	to the c	lifference in ter	mperature rise at the centre an	d surface	s at 3 d	days.	
R in all cases	=	0.42	Sect 4.7.4	Coefficient of Expansion	=	12	x 10E-6	Values
K1 = Creep Factor	=	0.65	Sect 4.9.1	Coefficient of Expansion 3D Tensile Strain Cap	=	76	με	From
Autogenous	=	N/A	Sect 4.6.1	3D Tensile Strength Cap) =	1.73	N/mm²	Main Shee
Temperature Diffe	erentia	al ΔT						
This is best calculate	nd usin	a the so	ftware provider	d with CIRIA C660. Appendix	۵2			
		0		ed mix design (Ref Table 4.2)				

	EC2 INTERACTIVE DESIGN TO	DOL		HIAIC 94
	THERMAL, SHRINKAGE, RESTRAINT	& CREEP		Howes Atkinson Crowder LLP
	HAC-PRO 1 - 5 - 2	REST	13	Copyright © 2009 HAC
Calculation of T1 Temp	erature Dron Using the C660 Adiabatic Pro	aram		

of 11 Temperature Drop Using the C660 Adiabatic Program

Whereas it is possible to use the C660 T1 charts to get an accurate value according to the mix used, these values are only appropriate when the Mean Daily Temperature (MT) = 15 deg and the Placing Temperature (PT) = 20 deg. In order to take account of variations in MT and PT the C660 Adiabatic spreadsheet must be used.

One of the features of this HAC program is its ability to automatically calculate T1. So a considerable amount of effort has been expended to devise a viable way of embedding key results from the C660 Adiabatic program into this program so they can be combined to suit the mix and MT and PT values. The aim is + / - 1 degree of accuracy.

Ranges Considered

The wall thickness H can vary from 200mm to 2200mm with ply or steel formwork. Slabs use steel with H = 1.3 x Depth. The Mean Temperature can vary from 20 deg down to 5 deg and up to 35 deg The Placing Temperature can vary from 15 deg down to 5 deg and up to 35 deg PFA% can vary from 0% up to 55% although the minimum addition would normally be 35% GGBS% can vary from 0% up to 80% although the minimum addition would normally be 35%.

Values Calculated Over the Range of H

The T1 values for a Control Mix of 350 kg of CEM1 with MT = 15 deg and PT = 20 deg The effect of varying PT between 5 deg & 35 deg in 5 deg steps. The effect of varying MT between 5 deg & 35 deg. The effect of a varying % of PFA for MT = 15 and PT varying between 5 deg and 35 deg. The effect of a varying % GGBS for MT = 15 and PT varying between 5 deg and 35 deg. The effect of a varying the kg of CEM1 for MT = 15 and PT varying between 5 deg and 35 deg. The equivalent extra kg of CEM1 within a total of additional kg when PFA or GGBS blended mixes are used.

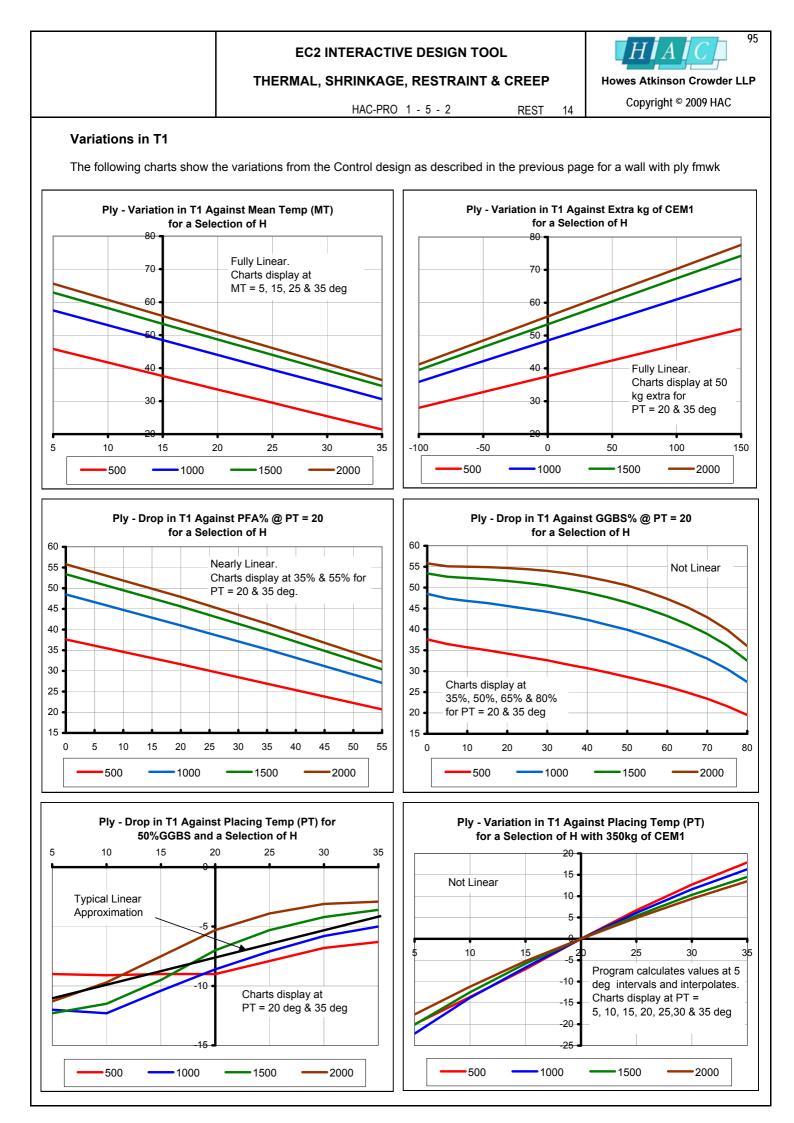
Observations

The results were interrogated to see how they varied. Some values diverge between H = 400 mm and H = 200 mm. The results can be considered as linear and symmetrical for an MT increase or decrease about the 15 deg Control value.

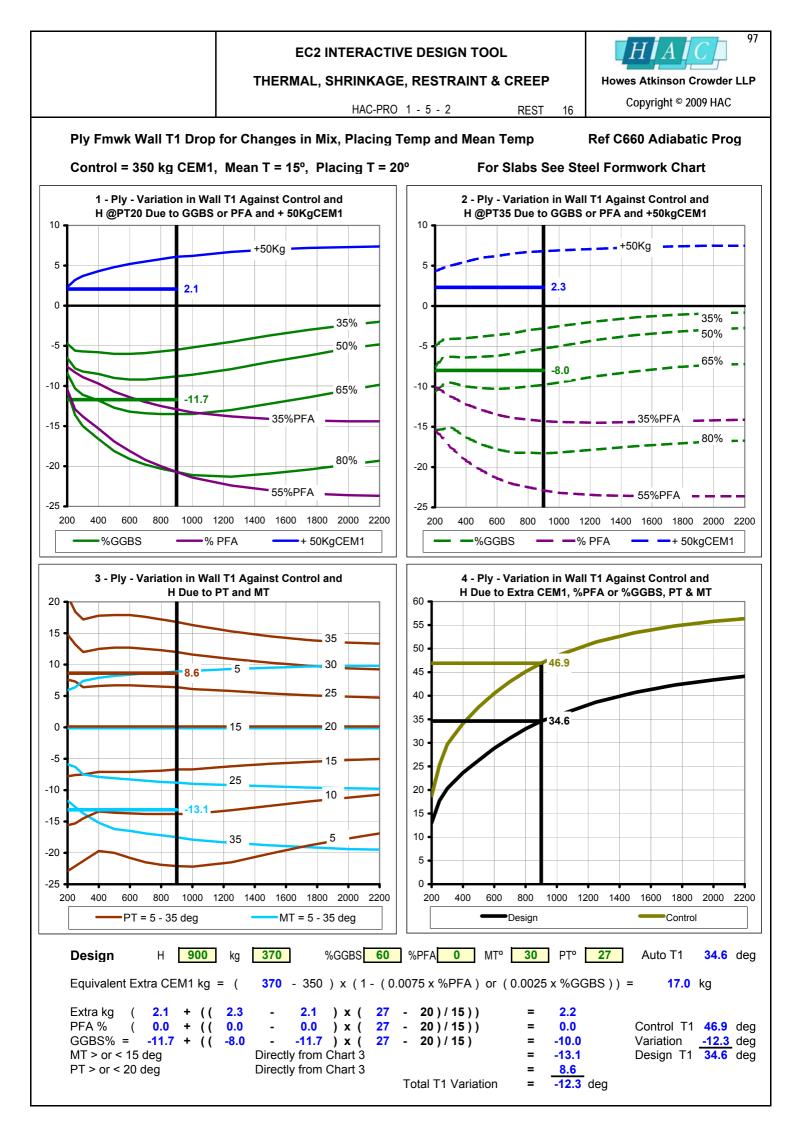
Varying PT causes slightly different linear changes in T1 between the 5 degree steps from PT = 5 deg to PT = 35 deg. Varying PT causes a linear change in T1 due to Extra CEM1 kg which lessens as H increases. Varying PT causes a linear change in T1 due to PFA which lessens as H increases. Varying PT causes a nearly linear change in T1 due to GGBS up to H 1000mm and increasingly polynomial thereafter.

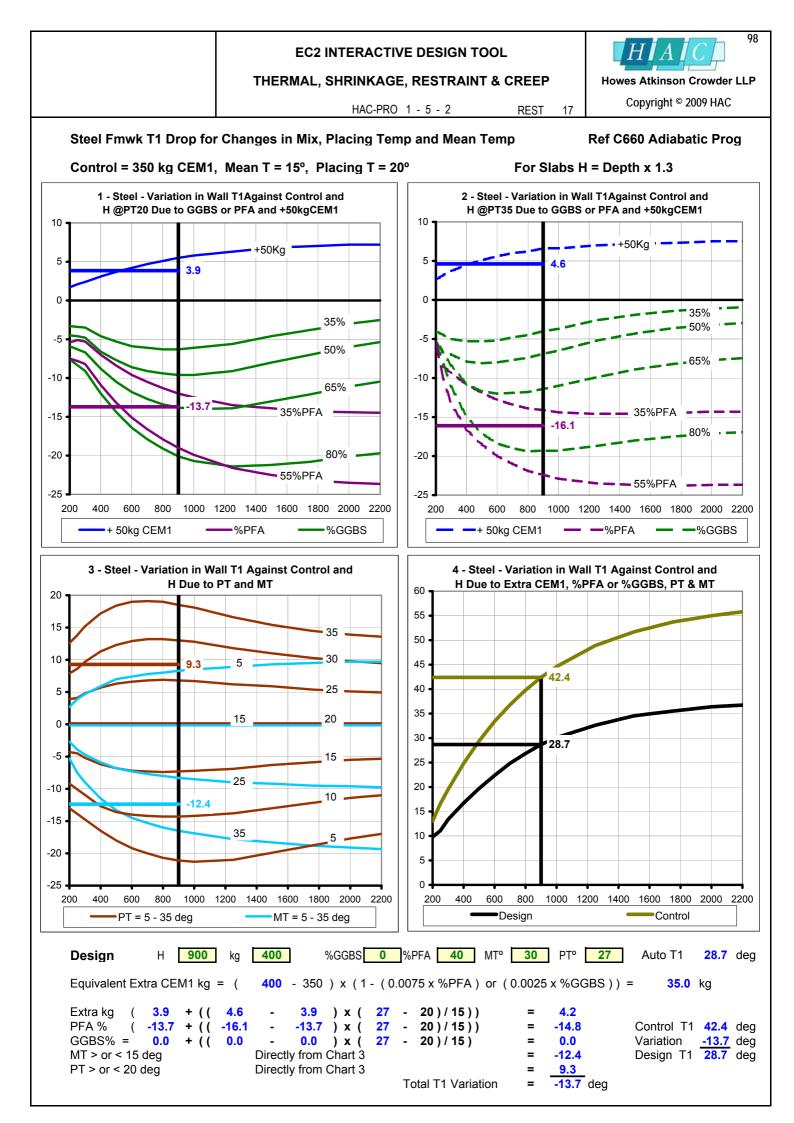
Varying CEM1 kg causes a linearly proportional increase in T1. Increasing PFA% causes a linearly proportional decrease in T1. Increasing GGBS% causes a non linear decrease in T1 which is more pronounced as H increases.

Varving MT causes a linearly proportional change in T1 whatever the value of PT or other variations.


Method

The HAC program uses a sophisticated Excel Lookup procedure coupled with interpolation and extrapolation of linearly varying data to add the variation effects to the control design values and derive a value of T1. The GGBS% variation between PT20 and PT35 is taken as linear as this is suficiently accurate and slightly conservative. The values are shown on composite charts which cover Ply and Steel formwork. The charts show:-


T1 variation due to Extra CEM1 kg between PT = 20 deg & 35 deg - use equiv kg value and interpolate or extrapolate. T1 variation due to PFA% between PT = 20 deg & 35 deg - interpolate or extrapolate and factor % values as it is linear. T1 variation due to GGBS between PT 20 deg lines and PT = 35 deg lines and % GGBS lines - interpolate or extrapolate. T1 variation due to MT between 5 deg & 35 deg - interpolate in between MT = 5 & 15 deg and 15 & 35 deg as it is linear. T1 variation due to PT between 5 deg & 35 deg - interpolate in between PT = 5, 10, 20, 25, 30 & 35 lines. The T1 values for the Control parameters.


The T1 values for the Design which combines all of the above.

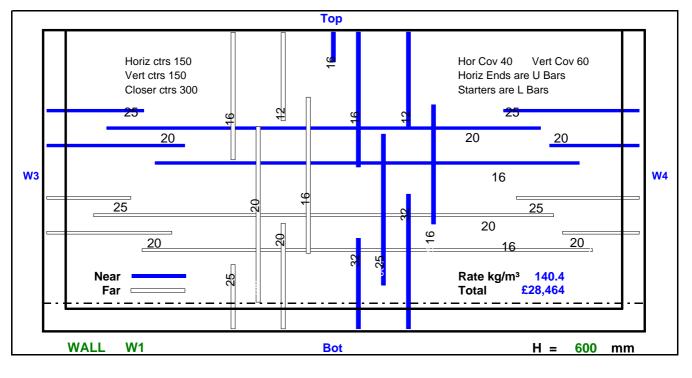
The charts can be used without a computer as all of the information and ranges of the varying data are shown. The charts provide a graphical view of what is happening in the program and the program's Auto results are displayed with an example of how the variables are taken from the chart and deducted from the control value to give a similar value. The author has tested numerous results against the CIRIA C660 values and believes the program is accurate enough to use.

		EC2 INTERACT	IVE DESIGN TOO	DL	
		THERMAL, SHRINKAG	BE, RESTRAINT &	& CREEP	Howes Atkinson Crowder LLP
		HAC-PR(D 1 - 5 - 2	REST 15	Copyright © 2009 HAC
Calculation	n of T1 Temp	erature Drop Using the Follo	wing Charts		
Manual Met	thod				
1	Select correc	chart according to Ply or Steel for	ormwork.		
2	Print out the e	example before deleting any value	es. Note the values	are displayed on	the charts in bold colour.
3	Delete the H	value in the input box. This will b	ank out all of the va	alues.	
4	Print out as m	any master sheets as you need.			
5	Define H, Tot	al kg, %GGBS or %PFA , Mean T	emp (MT) & Placin	g Temp (PT).	
	Draw a vertic	al line against H on all 4 charts.			
6	Calculate the	equivalent Extra CEM1 kg and e	nter on sheet.		
	Equivalent Ex	tra CEM1 kg = (Total - 350	0)x(1-(0.007	5 x %PFA)or(0.0025 x %GGBS))
7	Use Chart 1 t	o calculate the T1 effects of Extra	CEM1 kg, %PFA c	or %GGBS at 20 o	deg PT (PT20).
	Use the Equiv	alent CEM1 kg value and the Act	tual % of PFA or G0	GBS	
	Note that for	%GGBS you will have to interpola	ite in between the 3	85%, 50%, 65% &	80% lines.
8	Repeat using	Chart 2 for 35 deg PT (PT35).			
9	Enter the abo	ve T1 variations into the spaces i	n the formulae to ca	alculate the T1 ac	cording to the Design PT.
	The formulae	are arranged as follows.			
	T1 Variation =	· Variation at PT20 + ((Variation	at PT35 - Variatio	on at PT20)x(De	esign PT - 20)/ 15)
10	Use Chart 3 t	o calculate T1 variations due to D	esign MT and Des	ign PT	
11	Sum up the T	1 variations due to Extra CEM1 k	g, %PFA or %GGB	S, MT & PT to ge	t total T1 Variation.
12	Use Chart 4 t	o calculate T1 for the Control para	ameters.		
13	Design T1 va	ue = Control T1 value + T1 Varia	tion		
	Note	The Excel charts are fully interac parameters are changed.	tive and the blue va	alues will adjust a	s the input
		However, there may be occasion and in these conditions it is poss			to use Excel
		It may appear complex and slow	at first but it becom	ies faster with pra	ictice!

	EC2 DESIGN TOOL		HAC = 99
	REINFORCEMENT LAYOUT & QUA	NTITIES	Howes Atkinson Crowder LLP
	HAC-PRO 1 - 5 - 2	RC Det 1	Copyright © 2009 HAC
Reinforcement Layout	and Quantities		

The following method allows the design reinforcement requirements to be displayed in a manner that is suitable for briefing for detailing. It also demonstrates the concepts of staggered and alternate bars. It is good practice to stagger bars to even out the bond transfer. The use of alternate diameters allows more economy and the diagram shows how the lap length is always based on the smaller bar dia. The sequence should be large dia followed by small dia to avoid too much bar size variation at laps.

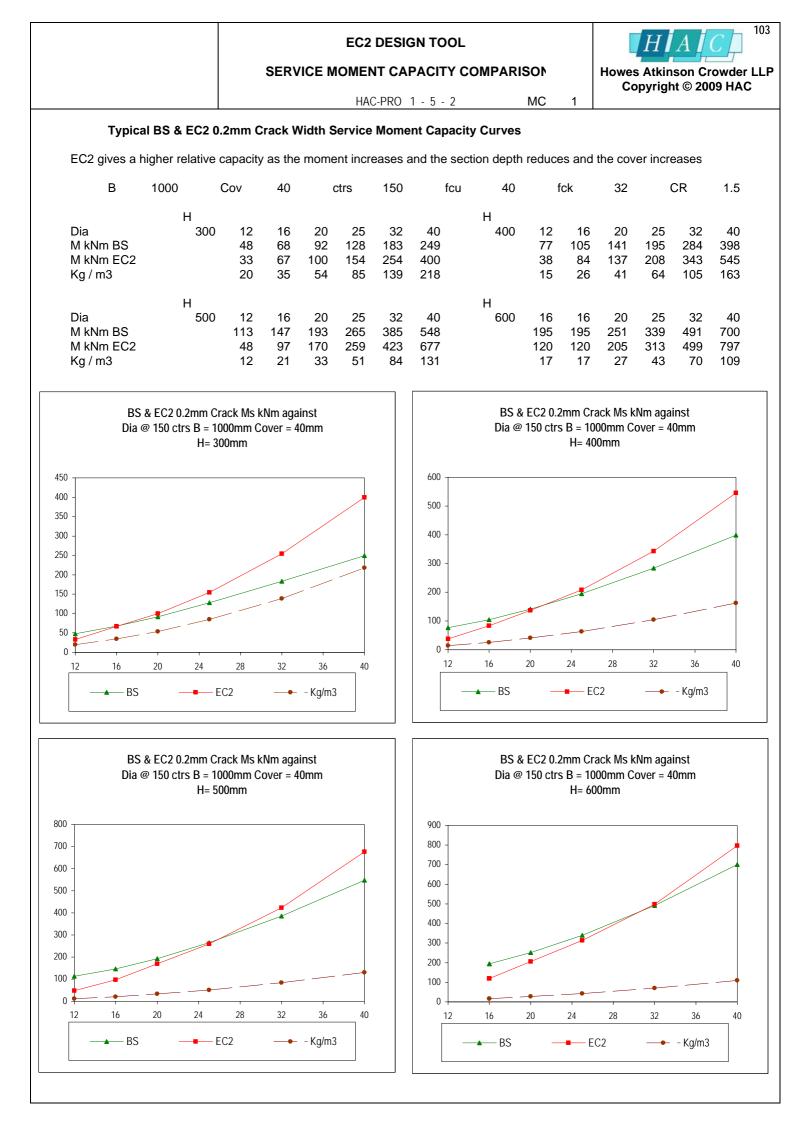
The method also allows the cost of an element to be estimated. The current rates for the reinforcement, concrete and formwork are entered. The program calculates the tonnage of reinforcement allowing for laps based on the specified maximum bar lengths. This is a guide only, as reinforcement and concrete rates depend on the total project quantities and formwork rates depend on the method and amount of re-use.

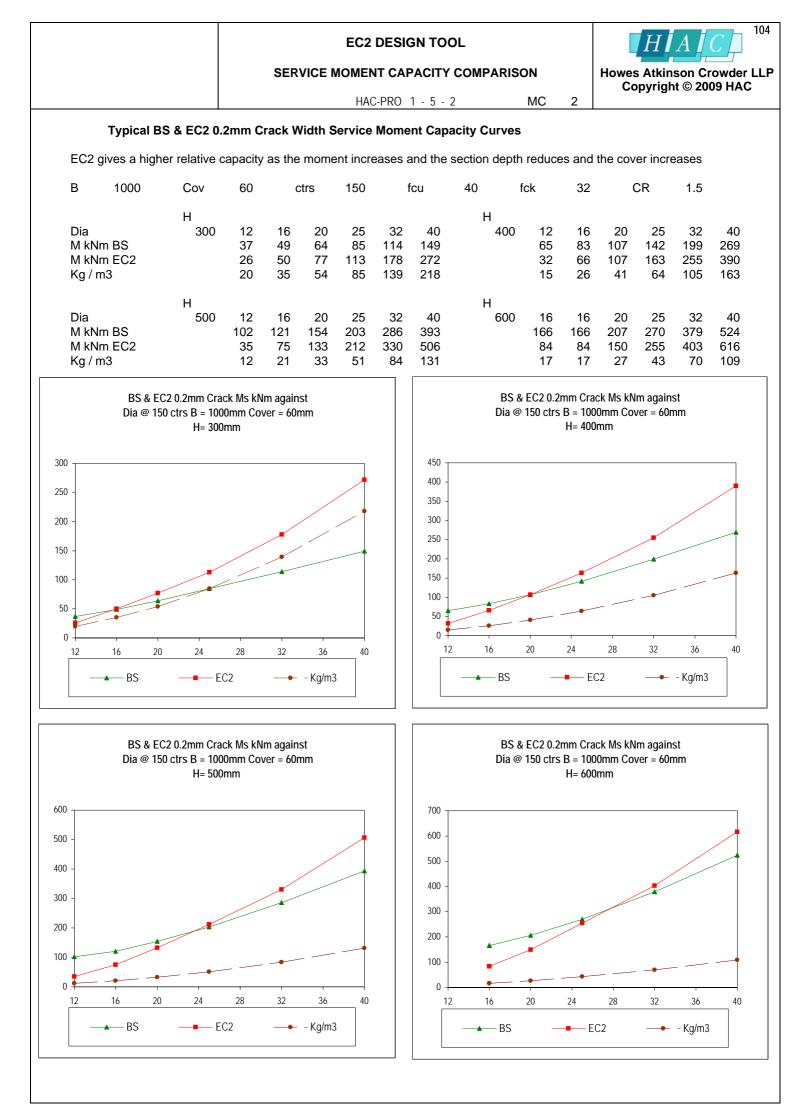

PANEL 1 Walls W1 & W2

Reinforcement

Parameters and Data

HOR Ctrs	150	N	/3	Sp	an	N	/4	O/A		16000	Lap = Dia x	50	Horiz	Cov	40
Near Face	Dia	25	20	20	16	25	20	н	W3	600	Stag = Diax	65	н	W4	600
Near race	Dia	25	20	20	10	25	20	Cov	W3	40	End Bars =	U	Cov	W4	40
Far Face	Dia	25	20	20	16	25	20	Near Ga	ар	1050	Max Bar L	9000	Near G	iap	1050
Fai Face	Dia	25	20	20	10	25	20	Far Gap)	700	Min Gap =	40	Far Ga	р	700
Vertical Top U	Bar Clo	sers Dia	a	1	6	Ctrs	300	Ga	p Den	otes B	ar Offset Dista	nce Fr	om Fac	e or To	р
VERT Ctrs	150	В	ot	Sp	an	Т	р	O/A		8000	Lap = Dia x	50	Vert	Cov	60
Near Face	Dia	32	32	25	16	16	12	н	Bot	600	Stag = Diax	65	н	Тор	0
Near Face	Dia	32	32	25	10	10	12	Cov	Bot	40	Starter Bars	L	Cov	Тор	50
Far Face	Dia	25	20	20	16	4.0	12	Near Ga	ар	600	Max Bar L	5000	Near g	ap	2000
гаг гасе	Dia	23	20	20	10	16	12	Far Gap	ว	150	Kicker =	150	Far Ga	p	1800




COSTING D	ΑΤΑ							
Reinf Dia	10	12	16	20	25	32	40	
Tonne	0.0	0.2	2.3	3.5	2.5	2.3	0.0	
Reinft Wt	10.8 Tonne	@ £800) /T =	£8,624	Steel £60	/ m²	Ply	£40 / m²
Conc Vol	77 m³	@ £125	5 / m³ =	£9,600	Formwork	Ply	-	
Fmk Area	256 m²	@ <u>£40</u>	/ m² =	£10,240	Rate kg/m ³	140.4	Total	£28,464

						EC	2 DES	IGN TC	OL				H	Α	C
				REI	NFOR	CEME	ENT LA	YOUT	& QU	IANT	ITIES	Но	wes Atk	inson C	row
						H	AC-PRO	1 - 5 -	2		RC Det	2	Copyri	ght © 20	09 H
Reinforce	ment La	ayout	and Q	uantiti	es Co	ont.									
Cost of St	tructura	l Elem	ents												
Generally, t	here will	be 2 si	milar lo	ng pan	els, 2 s	imilar	short p	anels, a	base s	slab a	nd possibly	a roof sla	o and co	olumns.	
				nf £			nc £			vk £		Total £			
Wall 1 Wall 2				524			600 800			240		28,464			
Wall 3			8,6 5,5				600 200			240 680		28,464 20,416			
Wall 4			5,5	536		7,	200			580 580		20,416			
Base Slab				496			400			344		33,240			
Columns Roof Slab	N/A N/A)			0 0			0 0		0 0			
	IN/A			816			, 000			184		0 131,000			
PANEL 2		Walls	W3 &	W4											
Key Data		Reinf	orcem	ent				Param	neters	and	Data				
HOR Ctr		1	13	Sp	an	V	V4	O/A H	14/0		0 Lap = Dia		Horiz		
Near Face) Dia	25	20	20	16	25	20	Cov	W3 W3	4	0 Stag = Di 0 End Bars	i= L	Cov	W4	6
Far Face		25	20	20	16	25	20	Near G Far Ga	p .	30	0 Max Bar 0 Min Gap	= 40	Near Far G	ap	5 3
Vertical Top					6	Ctrs	300		ap Der		Bar Offset D		-		
VERT Ctr			ot	Sp			op	O/A H	Bot		0 Lap = Dia 0 Stag = Di		Vert H	Cov Top	
Near Face	_	25	25	20	16	16	12	Cov Near G	Bot	4	0 Starter B 0 Max Bar	ars L		Тор	20
Far Face	Dia	25	20	16	12	16	12	Far Ga			0 Kicker =		Far G		18
				Г]	Π	Тор	•							7
		Horiz c	trs 150				<u>ں</u>				Hor Cov 40) Vert C	ov 60		
		Vert ctr					~				Horiz Ends				
		Closer	ctrs 300				п				Starters ar	e L Bars			
		25		ڡ		12		ശ	5 <mark>1</mark>		-25			_	
			20			_		`	`	-	20	20	`		
			20	-							20	20)	+	
W3											16	6			w
		25			9	c T	4					25		+	
		20								-	20				
			20						25	16		l6	20	1	
	Near].]	20	IJ	20			Rate kg/r	n ³ 120.1			
	Far				<u> </u> <u> </u>	<u>. .</u>	<u></u>	- - -		<u>. – .</u>	Total	£20,416		<u> </u>	
V	VALL	W3					Bot					H =	600	mm	
COSTING I			40		40								<u> </u>		
Reinf Dia Tonne	10 0.1		12 0.3		16 1.7		20 2.6		25 2.2		32 0.0	40 0.0			
Reinft Wt	6.9	Tonne	@	£800	/T =		£5,536		Steel	£60	/ m²	Ply	£40	/ m²	
							£7,200					,			
Conc Vol Fmk Area	58 192		@	£125	$/ m^2 =$		£7,680		Formv Rate k		Ply	Total		20,416	

				REINFO	RCEME	ENT LA	YOUT	& QL	JANTI	TIES		How		
					H	AC-PRO	1 - 5 -	2		RC Det	3		Copyright © 20	09 H
Reinforcem	ent La	iyout a	nd Qu	antities C	Cont.									
BASE SLA	3													
The bottom	base sl	lab rein	forcem	ent for a f	lat slab	is ofte	en prac	tically	taken	as the	same	across	the slab. T	he t
common way	of det	ailing th	ne supp	oort reinford	ement i	is to pr	ovide a	blank	et top	mat th	at will			
Extra Bars	Over S	Support	ts			Dia 1	Dia 2	Ctrs	L	Width	1	Tonne)	
						25 25	25 25	150 150				0.138 0.138		т
				Loca	ations		6		Total	Wt	1.654	т		
Key Data		Reinfo	rceme	ent			Paran	neters	and	Data				
X - X Ctrs	150			Span			O/A H	W3						
Тор	Dia		25		25	25	Cov	W3	40	End B	ars =	U	Cov W4	
Bottom	Dia	25	20		25	20		ap	300	Min G	ap =	40	Bot Gap	
	-				Ctrs		0/4	Gap						
			32		32	32	н		600	Stag =	= Diax		H W1	6
REINFORCEMENT LAYOUT & QUANTITIES HAC PRO 1 - 5 - 2 RC Det 3 Howes Atkinson Crow Copyright © 2009 H Reinforcement Layout and Quantities Cont. BASE SLAB The bottom base slab reinforcement for a flat slab is often practically taken as the same across the slab. The tr inforcement must resist the wall moment and tension at the edges and peak moments over the piles or columns. common way of detailing the support reinforcement is to provide a blanket top mat that will satisfy thermal and gene support moments with extra bars bundled over the support over a width = pile spacing / 4. Unit 1000 1200 1000 1000 1000 1000 1000 100														
Bottom	Dia	20	20	20 20	25	20			300	Min G	ap =			3
	HAC-PRO 1 - 5 - 2Copyright * 2009 HACReinforcement Layout and Quantities Cont.BASE SLABThe bottom base slab reinforcement for a flat slab is often practically taken as the same across the slab. The topThe bottom base slab reinforcement for a flat slab is often practically taken as the same across the slab. The topThe bottom base slab reinforcement is to provide a blanket top mat that will satisfy thermal and generalSupport support winforcement is to provide a blanket top mat that will satisfy thermal and generalSupport support winforcement is to provide a blanket top mat that will satisfy thermal and generalExtra Bars Over SupportsDia 1 Dia 2 CtrsL Width TonneX - X Dir2525X - X Dir2525X - X Dir2525X - X Dir1252510000CtrsL WidthTonneX - X Dir25252510000CtrsL WidthTonneX - X Dir252510000Cap Top CapAddition of the practically taken as the same across the slab. The topNum0/AAddit Dia 2													

					EC	2 DESI	GN TO	DOL				H A	C
			RE	EINFOR	RCEME	ENT LA	YOUT	"& QU	ANTI	TIES	How	es Atkinson Ci	
					H	AC-PRO	1 - 5	- 2		RC Det 4		Copyright © 200	09 H <i>I</i>
Reinforcem	ent La	yout and	d Quant	ities C	ont.								
ROOF SLA	3												
Extra Bars	Over S	Supports				Dia 1	Dia 2	Ctrs	L	Width	Tonne		
				X - X		16	16	150	4000		0.056		-
				Y - Y		16	16	150	4000	1200	0.056	0.113	
•				Loca	ations		6	_			Total V		I
Columns		_			Dia 1			Ctrs	Ht	H	Т	Conc Fmk m ³ m ²	
		Da	ita	_	25	8	10	300	8000		0.402	2.0 16	
				Loca	ations		6			Totals	2.414	12 96	
Key Data		Reinford	ement				Parar	neters	and	Data			
X - X Ctrs	150	W3		Span	V	V4	O/A			Lap = Dia x		X - X Cov	(
Тор	Dia	20 2	20 16	12	20	20	H Cov	W3	40	Stag = Diax End Bars =	U	H W4 Cov W4	60 2
Bottom	Dia		12 16		16	12	Top G Bot G	ap	300	Max Bar L Min Gap =	40	Top Gap Bot Gap	30 30
Chairs Dia and Y - Y Ctrs	Centres	Each Way		20 Span	Ctrs	1000 V1	O/A		12000	es Bar Offset	50	From Face	2
Тор	Dia	20 2	20 20	20	20	20	H Cov	W2		Stag = Diax End Bars =	L	H W1 Cov W1	6
Bottom	Dia	16 1	12 16	12	16	12	Top G Bot G			Max Bar L Min Gap =		Top Gap Bot Gap	30 30
			50				20 20	20	50	16 1 Rate kg/m ³	e U Bars = L Bars 20 12 <u>12</u> <u>1</u>	i	• • • • •
COSTING DA Reinf Dia Tonne		Roof Sla	ab 12 1.7	10 3.2	-	W2 20 4.7		25 0.0		32 0.0	H = 40 0.0	400 mm Chairs & S 1.2	J
Reinft Wt Conc Vol	11.1 77		@ £80 @ £12) /T 5 /m³=		£8,904 £9,600		Steel Formv		/ m² Ply	Ply	£40 / m²	

EC2 DESIGN TOOL FATIGUE	HIAICI Howes Atkinson Crowder LLP		
HAC-PRO 1 - 5 - 2 F	AT	1	Copyright © 2009 HAC

Fatigue

Concrete demonstrates a loss of strength which depends on the number of Cycles N and the ratio between the maximum and minimum values of the cyclical stress range.

N is defined in multiples of a million and the loss of strength for a given Min / Max stress ratio R relates linearly to Log N. This is presented in Wohler diagrams as below where Log 1 million = 6 and log 10 million is 7 and so on.

Ref. Fatigue of Normal Weight Concrete and Lightweight Concrete	by	EuroLightCon
http://www.sintef.no/static/bm/projects/eurolightcon/be3942r34.pdf		

All codes give equations for a Wohler-diagram. For comparison of the codes the following values of parameters are used:

R = 0.2; $f_{c;c}$ = 45 [MPa]

This results in the diagram of Figure 33.

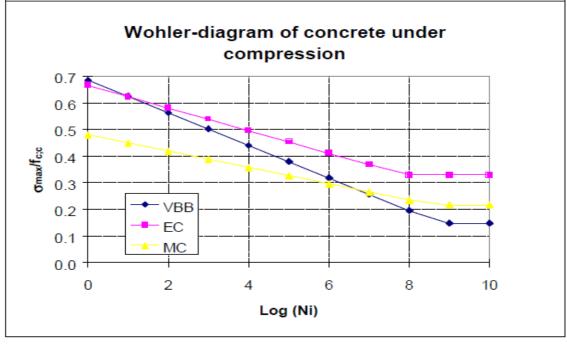
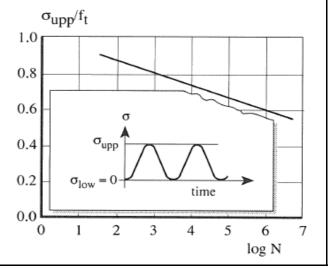


Figure 33: Wohler-diagram according of the codes for concrete under compression

By comparing the σ max / fc,c values at Log N =6 against the EC2 k1 value of 0.85 we can derive k1 for log N = 8 & 7

k1 at Log N = 8	=	0.85	х	0.33	1	0.42	=	0.67
k1 at Log N = 7	=	0.85	х	0.375	/	0.42	=	0.76

This is compared with a 2nd reference.


- Ref. Fracture and fatigue behaviour of high strength limestone concrete as compared to gravel concrete
 - by Hordijl, Wolsink, de Vries TNO Building & Research

By Extrapolating line

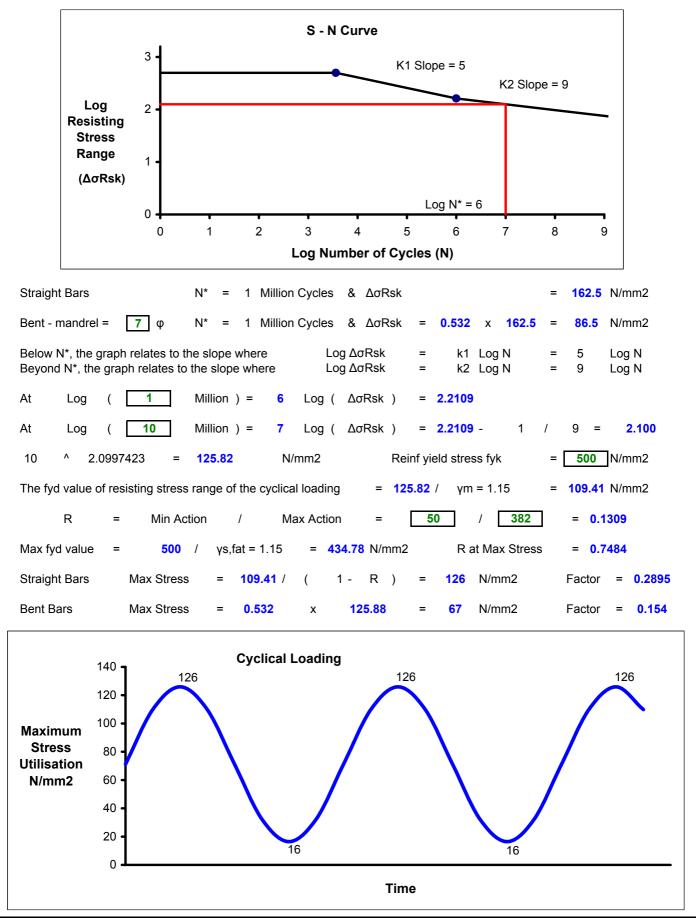
k1 at Log N = 7

= 0.85 x 0.535 / 0.6 = 0.76

Therefore a consistent value of k1 at N = 10 million is derived

				EC	22 DE	SIGN T	OOL				H	
					FA	TIGUE				Но		on Crowder © 2009 HAC
				HA	C-PRO) 1 - {	5 - 2	FA	AT 2		oopjiigiit	
Fatigue												
The following sh	ieets demon	istrate the	e proces	s used i	n the p	rogram					C2 part 1-1	Section 6.8 ly and Smith
Concrete in Co	mpression											
Normal acc	= 0.85	How	vever as	K1 is d	eemed	to inclu	de for	Long T	erm Effect	S	αcc,fat =	1
Grade	C 35	/ 45	Ν]	U	sing the	insitu	strengt	th at loadir	ig and set	ting (to) at 2	8 days
fcd - non t	fatigue =	αcc	fck / γn	n	=	0.8	5 x	35	/ 1.	5 =	= 19.83	33 N/mm2
K1 at Des	N = sign Value	1 100 10	Million	Cycles	=	= 0.6	7	See Fa	al Annex at 1 d from abo	F		hmically to a at 100 Millior r diagrams
βcc (to)	=	exp	(s(1-	(28 / to)	^ 0.5))		For Cl	ass N	Cement	s =	0.25
	=	1	l.					Age at	t time of lo	ading (to)	=	28 D
Strength Fa	actor =	1 - (fck / 2	50)	=	1 -	(3	5 /	250) =	= 0.80	6
fcd, fat	=	k1	βcc (to)	(αcc,fat	/ acc) ((1 - (fck	/ 250)	fcd	= 0.76	5 <mark>89</mark> x 1	9.833 = 1	5.251 N/mm
Equ 6.72	Ecd, max, e	equ	+	(Log N	/6)	x	0.43	((1- Req	u)^0.5	5) <=	1
Fau 6.72	Fcd. max. e	ean	+	(Log N	(6)	x	0.43	((1- Rea	u)^0.5	5) <=	1
	Ecd, max, e	equ	=	σcd ma	x, equ	/ fcd,fat		W	here	Log N / 6	x 0.43	3 = 0.501
	Requ		=	(σcd m	iin, equ	/ fcd,fa	t)/(o	rcd, ma	x / fcd,fat) =	= σcd min	/ σcd, max
	Ecd, max, e	equ	=	1 -		0.50	7 x ((1- Req	u)^	0.5)	
	Ecd, max, e	equ	=	1 -		0.50	7 x ((1 - 0.13	809)^	0.5)	= 0.532
	σcd max, e	qu	=	0.5323	fcd,fat	:	= 0.5	323 x	15.251	=	8.1182	N/mm2
	σcd max, e	qu	/	fcd	=	8.11	<mark>32</mark> /	19.83	3	=	0.4093	Fatigue F
	fck, fat	= 0.40	<mark>)93</mark> x	35	= 1	4 N/mn	2ו	fcu, fa	at =	0.4093 x	45	= <mark>18</mark> N/mm
Equ 6.77	σc, max / fc	cd,fat	< =	1	+ (0.45 x	(σς,	, min	/ fcd,	fat)	< = 0.9	
	σc, max		< =	0.5 fcd,	fat	+ (0.45	x σ	c, min)		< = 0.9	fcd, fat
	σc, max		< =	0.5 fcd,					equ x σc,r	nax	< = 0.9	
	σc, max		< =	fcd,fat >	k 0.5 /	(1-(0.45 >	(R,equ))		< = 0.9	
			< =	15.251	>	((.5313				8.1026	N/mm2
	σc, max			fcd		8.10		19.83			0.4085	Fatigue F

Note


Equ 6.72 factor for LogN > 6 taken from EC2 part 2: Concrete Bridges. For LogN =7, value matches equ 6.77 Equ 6.77 does not include an N term and from above it appears it is based on 10 million cycles.

	EC2 DESIGN TOOL	
	FATIGUE	Howes Atkinson Crowder LLP Copyright © 2009 HAC
	HAC-PRO 1 - 5 - 2 FAT 3	Copyright © 2009 HAC
Concrete in Shear		
	bach differs from BS8110 in that it utilises a strut and tie system wh	
	utilising a compressive strut, the compression values from Equ 6.7. factor v for concrete cracked in shear as per 6.2 (6).	7 may be used but with the
Where v = 0	$.6 \times (1 - (fck / 250)) = 0.516$	
For members not requiring	hear reinforcement, the EC2 method is similar to the BS8110 meth	od, see example below.
Equ 6.78 VE	D,max / VRd,c <= 0.5 + 0.45 x (VED,min	/ VRd,c) <= 0.9
EC2 VRd,c =	(CRd,c k (100 p1 fck) ^ (0.333)) bw d / 1000	kN Ignoring
& VRd,c	nin = (vmin) bw.d / 1000 kN	Axial Load
CRd,c = 0.18	/ γm = 0.18 / 1.5 = 0.12	
vmin = 0.035	x k ^ (3/ 2) x fck ^ (1/ 2) Appliies where Asl is very	y low or zero
For d	= 540 mm bw = 1000 mm AsI = 32	72 mm2
k = De	oth Factor = 1 + ((200 / d) ^ 0.5)) <= 2	= 1.6086
100 p1 = 100	x As I / (bw d) = 100 x 3272 / (1000	x 540) = 0.6059
VRd,c = (0.12 x	1.6086 x (0.6059 x 35) ^ 0.3333) x 1000 x 54	0 / 1000 = 288.52 kN
d,c min = 0.035 x (1.6086 ^ 1.5) x (35 ^ 0.5) x 1000 x 54	0 / 1000 = 228.12 kN
BS8110 Vc =	((0.79 / 1.25) (400 / d) ^ 0.25) ((100 p1 fcu / 25) ^ 0.333) bw d / 1000 kN
= (0.632 x	0.9277 x (0.6059 x 1.6) ^ 0.3333) x 1000 x 54	0 / 1000 = 313.36 kN
BS give	s an equivalent capacity to EC2 fcu max =	40 N /mm2
	Both methods include $\rho 1$ and fck or fcu terms ^ 0.333	
Where Vequ =	VED, min / VED, max = 50 / 3 8	2 = 0.1309 > = 0
VED,max <=	VRd,c x 0.5 + (0.45 x VED,min)	< = 0.9 VRd,c
VED,max <=		< = 0.9 VRd,c
VED,max <=		< = 0.9 VRd,c
VED,max <=		
_ ,		,
Shear Fatigue I	actor = 0.5313 VRd,c = 153.29 kN	Vc = 166.48 kN
	dsheet uses fck,fat and fcu,fat values throughout. So, in order to gram needs to multiply the concrete shear capacity components by t	
EC2 VRd,c VRd,c	Shear Fatigue Factor x (Fck / Fck, fat) ^ 0. nin Shear Fatigue Factor x (Fck / Fck, fat) ^ 0.	

Reinforcement

The damage caused by a single stress amplitude $\Delta \sigma$ is determined from the S - N curves in EC2 Fig 6.30 as below Values are based on yield and do not include γ s,fat, which must be applied at the end of the process.

